Displaying 1341 – 1360 of 3166

Showing per page

Monotonicity in Banach function spaces

Sinnamon, Gord (2007)

Nonlinear Analysis, Function Spaces and Applications

This paper is an informal presentation of material from [28]–[34]. The monotone envelopes of a function, including the level function, are introduced and their properties are studied. Applications to norm inequalities are given. The down space of a Banach function space is defined and connections are made between monotone envelopes and the norms of the down space and its dual. The connection is shown to be particularly close in the case of universally rearrangement invariant spaces. Next, two equivalent...

More lr saturated L∞ spaces

Gasparis, I., Papadiamantis, M. K., Zisimopoulou, D. Z. (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 05D10, 46B03.Given r ∈ (1, ∞), we construct a new L∞ separable Banach space which is lr saturated.

Multilinear Hölder-type inequalities on Lorentz sequence spaces

Daniel Carando, Verónica Dimant, Pablo Sevilla-Peris (2009)

Studia Mathematica

We establish Hölder-type inequalities for Lorentz sequence spaces and their duals. In order to achieve these and some related inequalities, we study diagonal multilinear forms in general sequence spaces, and obtain estimates for their norms. We also consider norms of multilinear forms in different Banach multilinear ideals.

Multilinear operators on C ( K , X ) spaces

Ignacio Villanueva (2004)

Czechoslovak Mathematical Journal

Given Banach spaces  X , Y and a compact Hausdorff space  K , we use polymeasures to give necessary conditions for a multilinear operator from C ( K , X ) into  Y to be completely continuous (resp.  unconditionally converging). We deduce necessary and sufficient conditions for  X to have the Schur property (resp.  to contain no copy of  c 0 ), and for  K to be scattered. This extends results concerning linear operators.

Multiple gaps

Antonio Avilés, Stevo Todorcevic (2011)

Fundamenta Mathematicae

We study a higher-dimensional version of the standard notion of a gap formed by a finite sequence of ideals of the quotient algebra 𝓟(ω)/fin. We examine different types of such objects found in 𝓟(ω)/fin both from the combinatorial and the descriptive set-theoretic side.

Multiple summing operators on l p spaces

Dumitru Popa (2014)

Studia Mathematica

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators is s-summing...

Multiplication operators on L ( L p ) and p -strictly singular operators

William Johnson, Gideon Schechtman (2008)

Journal of the European Mathematical Society

A classification of weakly compact multiplication operators on L ( L p ) , 1<p< , i s g i v e n . T h i s a n s w e r s a q u e s t i o n r a i s e d b y S a k s m a n a n d T y l l i i n 1992 . T h e c l a s s i f i c a t i o n i n v o l v e s t h e c o n c e p t o f p - s t r i c t l y s i n g u l a r o p e r a t o r s , a n d w e a l s o i n v e s t i g a t e t h e s t r u c t u r e o f g e n e r a l p - s t r i c t l y s i n g u l a r o p e r a t o r s o n Lp . T h e m a i n r e s u l t i s t h a t i f a n o p e r a t o r T o n Lp , 1<p<2 , i s p - s t r i c t l y s i n g u l a r a n d T|X i s a n i s o m o r p h i s m f o r s o m e s u b s p a c e X o f Lp , t h e n X e m b e d s i n t o Lr f o r a l l r<2 , b u t X n e e d n o t b e i s o m o r p h i c t o a H i l b e r t s p a c e . It is also shown that if T is convolution by a biased coin on L p of the Cantor group, 1 p < 2 , and T | X is an isomorphism for some reflexive subspace X of L p , then X is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.

Multiplicative characterization of Hilbert spaces and other interesting classes of Banach spaces.

A. Rodríguez Palacios (1996)

Revista Matemática de la Universidad Complutense de Madrid

For a Banach space X, we show how the existence of a norm-one element u in X and a norm-one continuous bilinear mapping f: X x X --&gt; X satisfying f(x,u) = f(u,x) = x for all x in X, together with some more intrinsic conditions, can be utilized to characterize X as a member of some relevant subclass of the class of Banach spaces.

Multiplicative isometries on the Smirnov class

Osamu Hatori, Yasuo Iida (2011)

Open Mathematics

We show that T is a surjective multiplicative (but not necessarily linear) isometry from the Smirnov class on the open unit disk, the ball, or the polydisk onto itself, if and only if there exists a holomorphic automorphism Φ such that T(f)=f ○ Φ for every class element f or T(f) = f ϕ ¯ ¯ for every class element f, where the automorphism Φ is a unitary transformation in the case of the ball and Φ(z 1, ..., z n) = ( λ 1 z i 1 , . . . , λ n z i n ) for |λ j| = 1, 1 ≤ j ≤ n, and (i 1; ..., i n)is some permutation of the integers from...

Multiplying balls in the space of continuous functions on [0,1]

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński (2005)

Studia Mathematica

Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set Φ - 1 ( E ) is residual whenever E is residual in...

Currently displaying 1341 – 1360 of 3166