Displaying 161 – 180 of 371

Showing per page

A notion of Orlicz spaces for vector valued functions

Gudrun Schappacher (2005)

Applications of Mathematics

The notion of the Orlicz space is generalized to spaces of Banach-space valued functions. A well-known generalization is based on N -functions of a real variable. We consider a more general setting based on spaces generated by convex functions defined on a Banach space. We investigate structural properties of these spaces, such as the role of the delta-growth conditions, separability, the closure of , and representations of the dual space.

A probabilistic version of the Frequent Hypercyclicity Criterion

Sophie Grivaux (2006)

Studia Mathematica

For a bounded operator T on a separable infinite-dimensional Banach space X, we give a "random" criterion not involving ergodic theory which implies that T is frequently hypercyclic: there exists a vector x such that for every non-empty open subset U of X, the set of integers n such that Tⁿx belongs to U, has positive lower density. This gives a connection between two different methods for obtaining the frequent hypercyclicity of operators.

A proof of the Grünbaum conjecture

Bruce L. Chalmers, Grzegorz Lewicki (2010)

Studia Mathematica

Let V be an n-dimensional real Banach space and let λ(V) denote its absolute projection constant. For any N ∈ N with N ≥ n define λ N = s u p λ ( V ) : d i m ( V ) = n , V l ( N ) , λₙ = supλ(V): dim(V) = n. A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that λ₂ = 4/3. König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made an attempt to prove this conjecture. Unfortunately, their Proposition 3.1, used in the proof, is incorrect. In this paper a complete proof of the Grünbaum conjecture is presented

A quantitative version of Krein's theorem.

M. Fabian, P. Hájek, V. Montesinos, V. Zizler (2005)

Revista Matemática Iberoamericana

A quantitative version of Krein's Theorem on convex hulls of weak compact sets is proved. Some applications to weakly compactly generated Banach spaces are given.

A quasi-dichotomy for C(α,X) spaces, α < ω₁

Elói Medina Galego, Maurício Zahn (2015)

Colloquium Mathematicae

We prove the following quasi-dichotomy involving the Banach spaces C(α,X) of all X-valued continuous functions defined on the interval [0,α] of ordinals and endowed with the supremum norm. Suppose that X and Y are arbitrary Banach spaces of finite cotype. Then at least one of the following statements is true. (1) There exists a finite ordinal n such that either C(n,X) contains a copy of Y, or C(n,Y) contains a copy of X. (2) For any infinite countable...

A remark on extrapolation of rearrangement operators on dyadic H s , 0 < s ≤ 1

Stefan Geiss, Paul F. X. Müller, Veronika Pillwein (2005)

Studia Mathematica

For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator T s , 0 < s < 2, to be the linear extension of the map ( h I ) / ( | I | 1 / s ) ( h τ ( I ) ) ( | τ ( I ) | 1 / s ) , where h I denotes the L -normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that T s is bounded on H s , then for all 0 < s < 2 the operator T s is bounded on H s .

A remark on functions continuous on all lines

Luděk Zajíček (2019)

Commentationes Mathematicae Universitatis Carolinae

We prove that each linearly continuous function f on n (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K. C. Ciesielski and D. Miller (2016). The same result holds also for f on an arbitrary Banach space X , if f has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such f on a separable X is continuous at all points outside a first category set which is also null in any usual sense.

Currently displaying 161 – 180 of 371