Displaying 81 – 100 of 151

Showing per page

Nevanlinna algebras

A. Haldimann, H. Jarchow (2001)

Studia Mathematica

The Nevanlinna algebras, α p , of this paper are the L p variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure. For s = (α+2)/p, the algebra F s of analytic functions f: → ℂ such that ( 1 - | z | ) s | f ( z ) | 0 as |z| → 1 is the Fréchet envelope of α p . The corresponding algebra s of analytic f: → ℂ such that s u p z ( 1 - | z | ) s | f ( z ) | < is a complete metric space but fails to be a topological vector space. F s is also...

On a question of C c ( X )

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of C ( X ) , Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that C c ( X ) is isomorphic to some ring of continuous functions if and only if υ 0 X is functionally countable. For a strongly zero-dimensional space X , this is equivalent to say that X is functionally countable. Hence for every P -space it is equivalent to pseudo- 0 -compactness.

On pointwise interpolation inequalities for derivatives

Vladimir G. Maz'ya, Tatjana Olegovna Shaposhnikova (1999)

Mathematica Bohemica

Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where k is the gradient of order k , is the Hardy-Littlewood maximal operator, and I z is the Riesz potential of order z , are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space M ( W p m ( n ) W p l ( n ) ) is described.

On the intrinsic geometry of a unit vector field

Yampolsky, Alexander L. Yampolsky, Alexander L. (2002)

Commentationes Mathematicae Universitatis Carolinae

We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K , we give a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove a non-existence result for K 0 , 1 . We also found a family ξ ω of vector fields on the hyperbolic 2-plane L 2 of curvature - c 2 which generate foliations on T 1 L 2 with leaves of constant intrinsic...

On the mappings 𝒵 A and A in intermediate rings of C ( X )

Mehdi Parsinia (2018)

Commentationes Mathematicae Universitatis Carolinae

In this article, we investigate new topological descriptions for two well-known mappings 𝒵 A and A defined on intermediate rings A ( X ) of C ( X ) . Using this, coincidence of each two classes of z -ideals, 𝒵 A -ideals and A -ideals of A ( X ) is studied. Moreover, we answer five questions concerning the mapping A raised in [J. Sack, S. Watson, C and C * among intermediate rings, Topology Proc. 43 (2014), 69–82].

On the non-existence of norms for some algebras of functions

Bertram Yood (1994)

Studia Mathematica

Let C(Ω) be the algebra of all complex-valued continuous functions on a topological space Ω where C(Ω) contains unbounded functions. First it is shown that C(Ω) cannot have a Banach algebra norm. Then it is shown that, for certain Ω, C(Ω) cannot possess an (incomplete) normed algebra norm. In particular, this is so for Ω = n where ℝ is the reals.

On unitary equivalence of quasi-free Hilbert modules

Li Chen (2009)

Studia Mathematica

We characterize unitary equivalence of quasi-free Hilbert modules, which complements Douglas and Misra's earlier work [New York J. Math. 11 (2005)]. We first confine our arguments to the classical setting of reproducing Hilbert spaces and then relate our result to equivalence of Hermitian vector bundles.

Pointwise convergence fails to be strict

Ján Borsík, Roman Frič (1998)

Czechoslovak Mathematical Journal

It is known that the ring B ( ) of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring C ( ) of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of C ( ) . In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of C ( ) which differs from B ( ) .

Quasi-linear maps

D. J. Grubb (2008)

Fundamenta Mathematicae

A quasi-linear map from a continuous function space C(X) is one which is linear on each singly generated subalgebra. We show that the collection of quasi-linear functionals has a Banach space pre-dual with a natural order. We then investigate quasi-linear maps between two continuous function spaces, classifying them in terms of generalized image transformations.

Currently displaying 81 – 100 of 151