Lattice structures in Orlicz spaces
We collect and extend results on the limit of as σ → 0⁺ or σ → 1¯, where Ω is ℝⁿ or a smooth bounded domain, k ∈ 0,1, l ∈ ℕ, p ∈ [1,∞), and is the intrinsic seminorm of order l+σ in the Sobolev space . In general, the above limit is equal to , where c and [·] are, respectively, a constant and a seminorm that we explicitly provide. The particular case p = 2 for Ω = ℝⁿ is also examined and the results are then proved by using the Fourier transform.
We study limiting K- and J-methods for arbitrary Banach couples. They are related by duality and they extend the methods already known in the ordered case. We investigate the behaviour of compact operators and we also discuss the representation of the methods by means of the corresponding dual functional. Finally, some examples of limiting function spaces are given.
We study linear operators from a non-locally convex Orlicz space to a Banach space . Recall that a linear operator is said to be σ-smooth whenever in implies . It is shown that every σ-smooth operator factors through the inclusion map , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on a locally convex...
We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted -spaces are proved. By using these results and a wavelet theory approach we calculate (θ,q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability...
We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions , where for a fixed function ϕ, denotes the one-dimensional orthogonal projection on the function , U is a group representation and g is an element of the group. They are defined as integrals , where W is an open, relatively...
Locally solid topologies on vector valued function spaces are studied. The relationship between the solid and topological structures of such spaces is examined.