A Korovkin-type theorem in the space of Riemann integrable funciotns.
We prove that for every closed locally convex subspace E of and for any continuous linear operator T from to there is a continuous linear operator S from to such that T = QS where Q is the quotient map from to .
In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result...
The paper analyzes the influence on the meaning of natural growth in the gradient of a perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian the natural problem becomes in , on , . This problem is a particular case of problem (2). Notice that is optimal as coefficient and exponent on the right hand side.