Displaying 41 – 60 of 149

Showing per page

A lifting theorem for locally convex subspaces of L 0

R. Faber (1995)

Studia Mathematica

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .

A new convexity property that implies a fixed point property for L 1

Chris Lennard (1991)

Studia Mathematica

In this paper we prove a new convexity property for L₁ that resembles uniform convexity. We then develop a general theory that leads from the convexity property through normal structure to a fixed point property, via a theorem of Kirk. Applying this theory to L₁, we get the following type of normal structure: any convex subset of L₁ of positive diameter that is compact for the topology of convergence locally in measure, must have a radius that is smaller than its diameter. Indeed, a stronger result...

A note on a critical problem with natural growth in the gradient

Boumediene Abdellaoui, Ireneo Peral (2006)

Journal of the European Mathematical Society

The paper analyzes the influence on the meaning of natural growth in the gradient of a perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian the natural problem becomes Δ u Λ N u | x | 2 = u + N 2 2 u | x | 2 x 2 | x | ( N 2 ) / 2 + λ f ( x ) in Ω , u = 0 on Ω , Λ N = ( ( N 2 ) / 2 ) 2 . This problem is a particular case of problem (2). Notice that ( N 2 ) / 2 is optimal as coefficient and exponent on the right hand side.

Currently displaying 41 – 60 of 149