Displaying 41 – 60 of 62

Showing per page

Interpolation on families of characteristic functions

Michael Cwikel, Archil Gulisashvili (2000)

Studia Mathematica

We study a problem of interpolating a linear operator which is bounded on some family of characteristic functions. A new example is given of a Banach couple of function spaces for which such interpolation is possible. This couple is of the form Φ ¯ = ( B , L ) where B is an arbitrary Banach lattice of measurable functions on a σ-finite nonatomic measure space (Ω,Σ,μ). We also give an equivalent expression for the norm of a function ⨍ in the real interpolation space ( B , L ) θ , p in terms of the characteristic functions of...

Interpolation properties of a scale of spaces.

A. K. Lerner, L. Liflyand (2003)

Collectanea Mathematica

A scale of function spaces is considered which proved to be of considerable importance in analysis. Interpolation properties of these spaces are studied by means of the real interpolation method. The main result consists in demonstrating that this scale is interpolated in a way different from that for Lp spaces, namely, the interpolation space is not from this scale.

Irregular amalgams.

Stewart, James, Watson, Saleem (1986)

International Journal of Mathematics and Mathematical Sciences

Isometric classification of norms in rearrangement-invariant function spaces

Beata Randrianantoanina (1997)

Commentationes Mathematicae Universitatis Carolinae

Suppose that a real nonatomic function space on [ 0 , 1 ] is equipped with two rearrangement-invariant norms · and | | | · | | | . We study the question whether or not the fact that ( X , · ) is isometric to ( X , | | | · | | | ) implies that f = | | | f | | | for all f in X . We show that in strictly monotone Orlicz and Lorentz spaces this is equivalent to asking whether or not the norms are defined by equal Orlicz functions, respĿorentz weights. We show that the above implication holds true in most rearrangement-invariant spaces, but we also identify a class...

Isometries of Musielak-Orlicz spaces II

J. Jamison, A. Kamińska, Pei-Kee Lin (1993)

Studia Mathematica

A characterization of isometries of complex Musielak-Orlicz spaces L Φ is given. If L Φ is not a Hilbert space and U : L Φ L Φ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all f L Φ . Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

Currently displaying 41 – 60 of 62