Relationship Between Matuszewska-orlicz, Semenov and Simonenko Indices of F-functions
We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an Lp-space (p < ∞). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.
We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an -space (). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.
On décrit de diverses façons les fermetures respectives, dans l’espace et dans sa version locale , de l’ensemble des fonctions à support compact et de l’ensemble des fonctions à support compact. Certains de ces résultats sont nouveaux; d’autres, considérés comme classiques, ne semblent pas avoir fait l’objet de publication. Des contre-exemples permettent de vérifier la diversité des sous-espaces considérés.
In connection with the classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes . We prove that when ϕ is and has lower index greater than one, the class coincides with some reverse-Hölder class . For more general ϕ we still get although the intersection of all these gives a proper subset of .
We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an -function whose index function is monotonous, the exact value of the Orlicz sequence space with Luxemburg norm is or . The Riesz angles of Orlicz space with Orlicz norm has the estimation .
Our aim is to give Sobolev-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces as an extension of T. Ohno, T. Shimomura (2022). Our results are new even for the doubling metric measure spaces.
In this paper, the criteria of strong roughness, roughness and pointwise roughness of Orlicz norm and Luxemburg norm on Musielak-Orlicz function spaces are obtained.
We present necessary and sufficient conditions for a rearrangement invariant function space to have a complete orthonormal uniformly bounded RUC system.