Previous Page 2

Displaying 21 – 35 of 35

Showing per page

Relaxation of optimal control problems in Lp-SPACES

Nadir Arada (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an Lp-space (p < ∞). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Relaxation of optimal control problems in 𝖫 𝗉 -spaces

Nadir Arada (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an L p -space ( p &lt; ). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Remarques sur certains sous-espaces de B M O ( n ) et de b m o ( n )

Gérard Bourdaud (2002)

Annales de l’institut Fourier

On décrit de diverses façons les fermetures respectives, dans l’espace B M O ( n ) et dans sa version locale b m o ( n ) , de l’ensemble des fonctions à support compact et de l’ensemble des fonctions C à support compact. Certains de ces résultats sont nouveaux; d’autres, considérés comme classiques, ne semblent pas avoir fait l’objet de publication. Des contre-exemples permettent de vérifier la diversité des sous-espaces considérés.

Reverse-Holder classes in the Orlicz spaces setting

E. Harboure, O. Salinas, B. Viviani (1998)

Studia Mathematica

In connection with the A ϕ classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes R H ϕ . We prove that when ϕ is Δ 2 and has lower index greater than one, the class R H ϕ coincides with some reverse-Hölder class R H q , q > 1 . For more general ϕ we still get R H ϕ A = q > 1 R H q although the intersection of all these R H ϕ gives a proper subset of q > 1 R H q .

Riesz angles of Orlicz sequence spaces

Ya Qiang Yan (2002)

Commentationes Mathematicae Universitatis Carolinae

We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an N -function Φ ( u ) whose index function is monotonous, the exact value a ( l ( Φ ) ) of the Orlicz sequence space with Luxemburg norm is a ( l ( Φ ) ) = 2 1 C Φ 0 or a ( l ( Φ ) ) = Φ - 1 ( 1 ) Φ - 1 ( 1 2 ) . The Riesz angles of Orlicz space l Φ with Orlicz norm has the estimation max ( 2 β Ψ 0 , 2 β Ψ ' ) a ( l Φ ) 2 θ Φ 0 .

Roughness of two norms on Musielak-Orlicz function spaces

Jimin Zheng, Lihuan Sun, Yun'an Cui (2008)

Banach Center Publications

In this paper, the criteria of strong roughness, roughness and pointwise roughness of Orlicz norm and Luxemburg norm on Musielak-Orlicz function spaces are obtained.

RUC systems in rearrangement invariant spaces

P. G. Dodds, E. M. Semenov, F. A. Sukochev (2002)

Studia Mathematica

We present necessary and sufficient conditions for a rearrangement invariant function space to have a complete orthonormal uniformly bounded RUC system.

Currently displaying 21 – 35 of 35

Previous Page 2