Spaces of analytic functions
The paper is devoted to spaces of generalized smoothness on so-called h-sets. First we find quarkonial representations of isotropic spaces of generalized smoothness on ℝⁿ and on an h-set. Then we investigate representations of such spaces via differences, which are very helpful when we want to find an explicit representation of the domain of a Dirichlet form on h-sets. We prove that both representations are equivalent, and also find the domain of some time-changed Dirichlet form on an h-set.
We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.
We study the structure of Lipschitz and Hölder-type spaces and their preduals on general metric spaces, and give applications to the uniform structure of Banach spaces. In particular we resolve a problem of Weaver who asks wether if M is a compact metric space and 0 < α < 1, it is always true the space of Hölder continuous functions of class α is isomorphic to l∞. We show that, on the contrary, if M is a compact convex subset of a Hilbert space this isomorphism holds if and only if...
For a metrizable space X and a finite measure space (Ω, , µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of -measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.
We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.
It is shown that complemented subspaces of s, that is, nuclear Fréchet spaces with properties (DN) and (Ω), which are 'almost normwise isomorphic' to a multiple direct sum of copies of themselves are isomorphic to s. This is applied, for instance, to spaces of Whitney jets on the Cantor set or the Sierpiński triangle and gives new results and also sheds new light on known results.
We use the scale of Besov spaces , 1/τ = α/d + 1/p, α > 0, p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains ⊂ ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.
Questa Nota è dedicata a mettere in evidenza alcune proprietà degli spazi delle funzioni a variazione limitata e degli spazi di Nikolskii ed , ( ), che non mi risulta siano già state esposte nella forma generale qui enunciata, quali la non separabilità, l'essere il duale di uno spazio di Banach separabile, la convergenza e la compattezza debole in e le loro applicazioni al classico problema di Stefan bifase.
Let be a complex Banach space, with the unit ball . We study the spectrum of a bounded weighted composition operator on determined by an analytic symbol with a fixed point in such that is a relatively compact subset of , where is an analytic function on .