On the quasinormability of Hb (U).
This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The -boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to σ-finite measure spaces with filtrations and the -boundedness is shown not to depend on the underlying measure space or the filtration. Martingale techniques...
Let denote the non-quasianalytic class of Beurling type on an open set Ω in . For the surjectivity of the convolution operator is characterized by various conditions, e.g. in terms of a convexity property of the pair and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator between ultradistributions of Roumieu type whenever . These...
In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators and . More precisely, we prove that and map with , boundedly and continuously. In addition, we show that the discrete versions and map boundedly and map continuously. Specially, we obtain the sharp variation inequalities of and , that is, if , where is the total variation of on and is the set of all functions satisfying .
We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).