Displaying 441 – 460 of 4028

Showing per page

Banach space properties of strongly tight uniform algebras

Scott Saccone (1995)

Studia Mathematica

We use the work of J. Bourgain to show that some uniform algebras of analytic functions have certain Banach space properties. If X is a Banach space, we say X is strongif X and X* have the Dunford-Pettis property, X has the Pełczyński property, and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and the polydisk-algebras are strong Banach spaces. Using Bourgain’s methods, Cima and Timoney have shown that if K is a compact planar set and A is R(K) or A(K), then A and...

Banach spaces

Laurent Gruson, Marius van der Put (1974)

Mémoires de la Société Mathématique de France

Banach spaces in which all multilinear forms are weakly sequentially continuous

Jesús Castillo, Ricardo García, Raquel Gonzalo (1999)

Studia Mathematica

We solve several problems in the theory of polynomials in Banach spaces. (i) There exist Banach spaces without the Dunford-Pettis property and without upper p-estimates in which all multilinear forms are weakly sequentially continuous: some Lorentz sequence spaces, their natural preduals and, most notably, the dual of Schreier's space. (ii) There exist Banach spaces X without the Dunford-Pettis property such that all multilinear forms on X and X* are weakly sequentially continuous; this gives an...

Banach-Saks property in some Banach sequence spaces

Yunan Cui, Henryk Hudzik, Ryszard Płuciennik (1997)

Annales Polonici Mathematici

It is proved that for any Banach space X property (β) defined by Rolewicz in [22] implies that both X and X* have the Banach-Saks property. Moreover, in Musielak-Orlicz sequence spaces, criteria for the Banach-Saks property, the near uniform convexity, the uniform Kadec-Klee property and property (H) are given.

Barrelled spaces with Boolean rings of projections.

Lech Drewnowski (1997)

Collectanea Mathematica

The talk presented a survey of results most of which have been obtained over the last several years in collaboration with M.Florencio and P.J.Paúl (Seville). The results concern the question of barrelledness of locally convex spaces equipped with suitable Boolean algebras or rings of projections. They are particularly applicable to various spaces of measurable vector valued functions. Some of the results are provided with proofs that are much simpler than the original ones.

Barrelledness of generalized sums of normed spaces

Ariel Fernández, Miguel Florencio, J. Oliveros (2000)

Czechoslovak Mathematical Journal

Let ( E i ) i I be a family of normed spaces and λ a space of scalar generalized sequences. The λ -sum of the family ( E i ) i I of spaces is λ { ( E i ) i I } : = { ( x i ) i I , x i E i , and ( x i ) i I λ } . Starting from the topology on λ and the norm topology on each E i , a natural topology on λ { ( E i ) i I } can be defined. We give conditions for λ { ( E i ) i I } to be quasi-barrelled, barrelled or locally complete.

Bases de Schauder dans certains espaces de fonctions holomorphes

Nguyen Thanh Van (1972)

Annales de l'institut Fourier

On étudie les bases de Schauder pour fonctions holomorphes et leurs applications à l’approximation et interpolation.Après avoir établi quelques faits généraux sur les bases et semi-bases, on les applique à l’étude des bases formées par une suite simple de polynômes.L’effort principal est porté sur la preuve de l’existence d’une “bonne” base commune des espaces des fonctions holomorphes sur Ω et χ , où Ω est un domaine de C et χ un compact dans Ω tels que Ω χ soit un domaine régulier pour le problème...

Bases in spaces of analytic germs

Michael Langenbruch (2012)

Annales Polonici Mathematici

We prove precise decomposition results and logarithmically convex estimates in certain weighted spaces of holomorphic germs near ℝ. These imply that the spaces have a basis and are tamely isomorphic to the dual of a power series space of finite type which can be calculated in many situations. Our results apply to the Gelfand-Shilov spaces S ¹ α and S α for α > 0 and to the spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions.

Currently displaying 441 – 460 of 4028