Commutators in real interpolation with quasi-power parameters.
A classical theorem of Coifman, Rochberg, and Weiss on commutators of singular integrals is extended to the case of generalized Lp spaces with variable exponent.
Let be the fractional maximal function. The commutator generated by and a suitable function is defined by . Denote by the set of all measurable functions such that and by the set of all such that the Hardy-Littlewood maximal function is bounded on . In this paper, the authors give some characterizations of for which is bounded from into , when , and with .
We establish compact and continuous embeddings for Bessel potential spaces modelled upon generalized Lorentz-Zygmund spaces. The target spaces are either of Lorentz-Zygmund or Hölder type.
Many authors have recently studied compact and weakly compact homomorphisms between function algebras. Among them, Lindström and Llavona [2] treat weakly compact continuous homomorphisms between algebras of type C(T) when T is a completely regular Hausdorff space.Llavona asked wether the results in [2] are valid in the case of algebras of differentiable functions on Banach spaces. The purpose of this note is to give an affirmative answer to this question, by proving that weakly compact homomorphisms...
Here we consider when the difference of two composition operators is compact on the weighted Dirichlet spaces . Specifically we study differences of composition operators on the Dirichlet space and S 2, the space of analytic functions whose first derivative is in H 2, and then use Calderón’s complex interpolation to extend the results to the general weighted Dirichlet spaces. As a corollary we consider composition operators induced by linear fractional self-maps of the disk.
In this Note we give some compact embedding theorems for Sobolev spaces, related to -tuples of vectors fields of class on .
We characterize compact embeddings of Besov spaces involving the zero classical smoothness and a slowly varying smoothness into Lorentz-Karamata spaces , where is a bounded domain in and is another slowly varying function.
Let Ω be a bounded domain in Rn and denote by idΩ the restriction operator from the Besov space Bpq1+n/p(Rn) into the generalized Lipschitz space Lip(1,-α)(Ω). We study the sequence of entropy numbers of this operator and prove that, up to logarithmic factors, it behaves asymptotically like ek(idΩ) ~ k-1/p if α > max (1 + 2/p + 1/q, 1/p). Our estimates improve previous results by Edmunds and Haroske.
We prove that every weakly compact multiplicative linear continuous map from into is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra , where is the open unit ball of an infinite-dimensional Banach space E.