Enlarging a subspace of C(X) without changing the Choquet boundary.
Eggert Briem (1979)
Mathematica Scandinavica
Michel Talagrand (1977)
Séminaire Choquet. Initiation à l'analyse
Jacques Chaumat, Anne-Marie Chollet (1979)
Annales de l'institut Fourier
Soit un domaine borné strictement pseudoconvexe dans à frontière régulière . On montre que tout compact d’une sous-variété de dont l’espace tangent en chaque point de est contenu dans le sous-espace complexe maximal de est un ensemble pic pour , la classe des fonctions analytiques dans dont toutes les dérivées sont continues dans .
Robert Hardt, Tristan Rivière (2000/2001)
Séminaire Équations aux dérivées partielles
Chan-Porn (1989)
Studia Mathematica
Mario C. Matos, Leopoldo Nachbin (1981)
Compositio Mathematica
R. Meise, D. Vogt, M. Börgens (1981)
Journal für die reine und angewandte Mathematik
José M. Ansemil, Jerónimo López-Salazar, Socorro Ponte (2011)
Studia Mathematica
Let X be an infinite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B₁ ⊂ X and unbounded on another given ball B₂ ⊂ X have been obtained. In this paper we consider the problem of finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection.
Iwona Piotrowska (2008)
Banach Center Publications
The present paper is devoted to the study of the “quality” of the compactness of the trace operator. More precisely, we characterize the asymptotic behaviour of entropy numbers of the compact map , where Γ is a d-set with 0 < d < n and a weight of type near Γ with ϰ > -(n-d). There are parallel results for approximation numbers.
Dorothee D. Haroske, Leszek Skrzypczak (2008)
Revista Matemática Complutense
Caetano, A.M. (2000)
Portugaliae Mathematica
D. Edmunds, Yu. Netrusov (1998)
Studia Mathematica
Let id be the natural embedding of the Sobolev space in the Zygmund space , where , 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers of this embedding and show that , where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.
Elhoussine Azroul, Abdelkrim Barbara, Mohamed Badr Benboubker, Hassane Hjiaj (2014)
Applicationes Mathematicae
We study a class of anisotropic nonlinear elliptic equations with variable exponent p⃗(·) growth. We obtain the existence of entropy solutions by using the truncation technique and some a priori estimates.
Azeddine Aissaoui Fqayeh, Abdelmoujib Benkirane, Mostafa El Moumni (2014)
Applicationes Mathematicae
We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations ∂u/∂t - div(a(x,t,u,∇u) + Φ(u)) + g(u)M(|∇u|) = μ in Q, in the framework of Orlicz-Sobolev spaces without any restriction on the N-function of the Orlicz spaces, where -div(a(x,t,u,∇u)) is a Leray-Lions operator and . The function g(u)M(|∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign...
M.S.B. Elemine Vall, A. Ahmed, A. Touzani, Abdelmoujib Benkirane (2020)
Archivum Mathematicum
We prove an existence result of entropy solutions for a class of strongly nonlinear parabolic problems in Musielak-Sobolev spaces, without using the sign condition on the nonlinearities and with measure data.
M. Burnecki (1996)
Acta Universitatis Carolinae. Mathematica et Physica
Denis Serre (1983)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Sophocles K. Mercourakis, Georgios Vassiliadis (2015)
Studia Mathematica
We show that for "most" compact nonmetrizable spaces, the unit ball of the Banach space C(K) contains an uncountable 2-equilateral set. We also give examples of compact nonmetrizable spaces K such that the minimum cardinality of a maximal equilateral set in C(K) is countable.
Liliana de Rosa, Carlos Segovia (2002)
Collectanea Mathematica
One-sided versions of maximal functions for suitable defined distributions are considered. Weighted norm equivalences of these maximal functions for weights in the Sawyer's Aq+ classes are obtained.
Sompong Dhompongsa (2000)
Commentationes Mathematicae Universitatis Carolinae
We obtain the equivalence of the properties and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.