Displaying 81 – 100 of 139

Showing per page

Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces

Hidemitsu Wadade (2010)

Studia Mathematica

We present several continuous embeddings of the critical Besov space B p n / p , ρ ( ) . We first establish a Gagliardo-Nirenberg type estimate | | u | | q , w r 0 , ν C ( 1 / ( n - r ) ) 1 / q + 1 / ν - 1 / ρ ( q / r ) 1 / ν - 1 / ρ | | u | | p 0 , ρ ( n - r ) p / n q | | u | | p n / p , ρ 1 - ( n - r ) p / n q , for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function w r ( x ) = 1 / ( | x | r ) with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding B p n / p , ρ ( ) B Φ , w r 0 , ν ( ) , where the function Φ₀ of the weighted Besov-Orlicz space B Φ , w r 0 , ν ( ) is a Young function of the exponential type. Another point of interest is to embed B p n / p , ρ ( ) into the weighted Besov space B p , w 0 , ρ ( ) with...

Remarks on the theory of elasticity

Sergio Conti, Camillo de Lellis (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the L 2 norm of the deformation gradient and a nonlinear function of the determinant of the gradient. Non–interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some L p -norm of the gradient with p &gt; 2 is controlled...

Remarques sur certains sous-espaces de B M O ( n ) et de b m o ( n )

Gérard Bourdaud (2002)

Annales de l’institut Fourier

On décrit de diverses façons les fermetures respectives, dans l’espace B M O ( n ) et dans sa version locale b m o ( n ) , de l’ensemble des fonctions à support compact et de l’ensemble des fonctions C à support compact. Certains de ces résultats sont nouveaux; d’autres, considérés comme classiques, ne semblent pas avoir fait l’objet de publication. Des contre-exemples permettent de vérifier la diversité des sous-espaces considérés.

Remarques sur le calcul symbolique dans certains espaces de Besov à valeurs vectorielles

Salah Eddine Allaoui (2009)

Annales mathématiques Blaise Pascal

Dans ce travail on s’intéresse aux opérateurs de composition T f ( g ) : = f g sur certains espaces de Besov et de Lizorkin-Triebel à valeurs dans m . Dans le but de caractériser les fonctions qui opèrent, on établit que la condition de Lipschitz, locale ou globale suivant que l’espace B p , q s ( n , m ) ou F p , q s ( n , m ) se plonge ou non dans L ( n , m ) , est nécessaire pour s &gt; 0 , et que l’appartenance locale au même espace l’est aussi pour m n . Nous étudions enfin la régularité de l’opérateur T f .

Removable singularities for weighted Bergman spaces

Anders Björn (2006)

Czechoslovak Mathematical Journal

We develop a theory of removable singularities for the weighted Bergman space 𝒜 μ p ( Ω ) = { f analytic in Ω Ω | f | p d μ < } , where μ is a Radon measure on . The set A is weakly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) Hol ( Ω ) , and strongly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) = 𝒜 μ p ( Ω ) . The general theory developed is in many ways similar to the theory of removable singularities for Hardy H p spaces, B M O and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....

Representation formulas and weighted Poincaré inequalities for Hörmander vector fields

Bruno Franchi, Guozhen Lu, Richard L. Wheeden (1995)

Annales de l'institut Fourier

We derive weighted Poincaré inequalities for vector fields which satisfy the Hörmander condition, including new results in the unweighted case. We also derive a new integral representation formula for a function in terms of the vector fields applied to the function. As a corollary of the L 1 versions of Poincaré’s inequality, we obtain relative isoperimetric inequalities.

Representation of locally convex algebras.

L. Oubbi (1994)

Revista Matemática de la Universidad Complutense de Madrid

We deal with the representation of locally convex algebras. On one hand as subalgebras of some weighted space CV(X) and on the other hand, in the case of uniformly A-convex algebras, as inductive limits of Banach algebras. We also study some questions on the spectrum of a locally convex algebra.

Currently displaying 81 – 100 of 139