Previous Page 8

Displaying 141 – 149 of 149

Showing per page

Isomorphically isometric probabilistic normed linear spaces.

Howard Sherwood (1979)

Stochastica

Probabilistic normed linear spaces (briefly PNL spaces) were first studied by A. N. Serstnev in [1]. His definition was motivated by the definition of probabilistic metric spaces (PM spaces) which were introduced by K. Menger and subsequebtly developed by A. Wald, B. Schweizer, A. Sklar and others.In a previuos paper [2] we studied the relationship between two important classes of PM spaces, namely E-spaces and pseudo-metrically generated PM spaces. We showed that a PM space is pseudo-metrically...

Isomorphism of certain weak L p spaces

Denny Leung (1993)

Studia Mathematica

It is shown that the weak L p spaces p , , L p , [ 0 , 1 ] , and L p , [ 0 , ) are isomorphic as Banach spaces.

Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces

Valerii Los, Aleksandr Murach (2017)

Open Mathematics

In Hörmander inner product spaces, we investigate initial-boundary value problems for an arbitrary second order parabolic partial differential equation and the Dirichlet or a general first-order boundary conditions. We prove that the operators corresponding to these problems are isomorphisms between appropriate Hörmander spaces. The regularity of the functions which form these spaces is characterized by a pair of number parameters and a function parameter varying regularly at infinity in the sense...

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further obtains the...

Isomorphy classes of spaces of holomorphic functions on open polydiscs in dual power series spaces

Manfred Scheve (1991)

Studia Mathematica

Let Λ_R(α) be a nuclear power series space of finite or infinite type with lim_{j→∞} (1/j) log α_j = 0. We consider open polydiscs D_a in Λ_R(α)'_b with finite radii and the spaces H(D_a) of all holomorphic functions on D_a under the compact-open topology. We characterize all isomorphy classes of the spaces {H(D_a) | a ∈ Λ_R(α), a > 0}. In the case of a nuclear power series space Λ₁(α) of finite type we give this characterization in terms of the invariants (Ω̅ ) and (Ω̃ ) known from the theory...

Iterates and the boundary behavior of the Berezin transform

Jonathan Arazy, Miroslav Engliš (2001)

Annales de l’institut Fourier

Let μ be a measure on a domain Ω in n such that the Bergman space of holomorphic functions in L 2 ( Ω , μ ) possesses a reproducing kernel K ( x , y ) and K ( x , x ) &gt; 0 x Ω . The Berezin transform associated to μ is the integral...

Currently displaying 141 – 149 of 149

Previous Page 8