Sur les Distributions Images Réciproques par une Fonction analytique
We construct a solution T0 in the distribution sense of equation fT = 1 near a critical point of f and we give an upper bound for the order of T0 in terms of f's Newton Polyhedron, provided f is non degenerate in some sense. The order of T0 is equal to this upper bound when f is non-negative.
Étant donnés champs de vecteurs , réels, de classe dans , nous étudions l’existence de traces sur une variété de classe , de dimension , frontière d’un ouvert , des distributions telles que:
We review recent developments in the theory of inductive limits and use them to give a new and rather easy proof for Hörmander?s characterization of surjective convolution operators on spaces of Schwartz distributions.
Let denote the space of all ω-ultradifferentiable functions of Roumieu type on an open interval I in ℝ. In the special case ω(t) = t we get the real-analytic functions on I. For with one can define the convolution operator , . We give a characterization of the surjectivity of for quasianalytic classes , where I = ℝ or I is an open, bounded interval in ℝ. This characterization is given in terms of the distribution of zeros of the Fourier Laplace transform of μ.
We show that if Ω is an open subset of ℝ², then the surjectivity of a partial differential operator P(D) on the space of ultradistributions of Beurling type is equivalent to the surjectivity of P(D) on .
Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.