Multiple positive solutions in the sense of distributions of singular BVPs on time scales and an application to Emden-Fowler equations.
Multiplication by harmonic representations of distributions, introduced by Li Banghe, is an extension of a certain product by radial (rotationally symmetric) mollifiers and therefore a strict extension of the Kami'{n}ski and Colombeau product.
Let be the Zemanian space of Hankel transformable functions, and let be its dual space. In this paper is shown to be nuclear, hence Schwartz, Montel and reflexive. The space , also introduced by Zemanian, is completely characterized as the set of multipliers of and of . Certain topologies are considered on , and continuity properties of the multiplication operation with respect to those topologies are discussed.
Spaces , , of multipliers of temperate distributions introduced in an earlier paper of the first author are expressed as inductive limits of Hilbert spaces.
We consider -tuples of commuting operators on a Banach space with real spectra. The holomorphic functional calculus for is extended to algebras of ultra-differentiable functions on , depending on the growth of , , when . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
We prove that for a real analytic generic submanifold of whose Levi-form has constant rank, the tangential -system is non-solvable in degrees equal to the numbers of positive and negative Levi-eigenvalues. This was already proved in [1] in case the Levi-form is non-degenerate (with non-necessarily real analytic). We refer to our forthcoming paper [7] for more extensive proofs.