About a family of distributional products important in the applications
Algebras of ultradifferentiable generalized functions satisfying some regularity assumptions are introduced. We give a microlocal analysis within these algebras related to the affine regularity type and the ultradifferentiability property. As a particular case we obtain new algebras of Gevrey generalized functions.
We consider the topological algebra of (Taylor) multipliers on spaces of real analytic functions of one variable, i.e., maps for which monomials are eigenvectors. We describe multiplicative functionals and algebra homomorphisms on that algebra as well as idempotents in it. We show that it is never a Q-algebra and never locally m-convex. In particular, we show that Taylor multiplier sequences cease to be so after most permutations.
Let A be a locally convex, unital topological algebra whose group of units is open and such that inversion is continuous. Then inversion is analytic, and thus is an analytic Lie group. We show that if A is sequentially complete (or, more generally, Mackey complete), then has a locally diffeomorphic exponential function and multiplication is given locally by the Baker-Campbell-Hausdorff series. In contrast, for suitable non-Mackey complete A, the unit group is an analytic Lie group without...
The paper aims to study systems of linear ordinary differential equations in the context of an algebra of almost periodic generalized ultradistributions. Conditions on the existence of generalized solutions are given.
We construct a new Boehmian space containing the space 𝓢̃'(ℝⁿ×ℝ₊) and define the extended wavelet transform 𝓦 of a new Boehmian as a tempered Boehmian. In analogy to the distributional wavelet transform, it is proved that the extended wavelet transform is linear, one-to-one, and continuous with respect to δ-convergence as well as Δ-convergence.
A slight modification of the definition of the Colombeau generalized functions allows to have a canonical embedding of the space of the distributions into the space of the generalized functions on a manifold. The previous attempt in [5] is corrected, several equivalent definitions are presented.
For potentials , where and are certain Schwartz distributions, an inversion formula for is derived. Convolutions and Fourier transforms of distributions in -spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order , , of a compact subset of has the following property: its restriction to the interior of is an absolutely continuous measure with analytic density which is expressed by an explicit formula.