Displaying 861 – 880 of 1085

Showing per page

Strict topologies as topological algebras

Surjit Singh Khurana (2001)

Czechoslovak Mathematical Journal

Let X be a completely regular Hausdorff space, C b ( X ) the space of all scalar-valued bounded continuous functions on X with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally m -convex.

Structure of measures on topological spaces.

José L. de María, Baltasar Rodríguez Salinas (1989)

Revista Matemática de la Universidad Complutense de Madrid

The Radon spaces of type (T), i.e., topological spaces for which every finite Borel measure on Omega is T-additive and T-regular are characterized. The class of these spaces is very wide and in particular it contains the Radon spaces. We extend the results of Marczewski an Sikorski to the sygma-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topology. Finally, the completely additive families of measurable subsets related with the works of Hansell, Koumoullis, and...

Substitution formulas for the Kurzweil and Henstock vector integrals

Márcia Federson (2002)

Mathematica Bohemica

Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains that of Henstock. In the present paper, we consider abstract vector integrals of Kurzweil and prove Substitution...

Sur certains espaces de formes linéaires liés aux mesures vectorielles

D. Bucchioni, André Goldman (1976)

Annales de l'institut Fourier

En liaison avec le théorème d’Orlicz-Pettis, on étudie la plus fine topologie localement convexe T 1 sur un elc E pour laquelle toute mesure définie sur une tribu et à valeurs dans E est T 1 -bornée. Pour cela, on considère l’espace G 1 ' des formes linéaires x ' sur E telles que, pour toute suite ( x n ) sous-série convergente de E , on ait Σ | x n , x ' | < + . La topologie T 1 coïncide avec la topologie de Mackey τ ( E , G 1 ' )  ; elle est bornologique et tonnelée, mais ce n’est pas la topologie bornologique et tonnelée associée à E . Ce point est...

Currently displaying 861 – 880 of 1085