Calcul fonctionnel holomorphe dans les algèbres de Banach ultramétriques
Page 1
Alain Escassut (1974/1975)
Groupe de travail d'analyse ultramétrique
A. J. Ellis (1975)
Compositio Mathematica
Michael Yin-Hei Cheng (2012)
Studia Mathematica
Let G be a locally compact group and let π be a unitary representation. We study amenability and H-amenability of π in terms of the weak closure of (π ⊗ π)(G) and factorization properties of associated coefficient subspaces (or subalgebras) in B(G). By applying these results, we obtain some new characterizations of amenable groups.
G. A. Stavrakas (1989)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Heath, Matthew J. (2009)
Banach Journal of Mathematical Analysis [electronic only]
Shatery, H.R. (2005)
International Journal of Mathematics and Mathematical Sciences
Eve Helsmoortel (1971)
Séminaire de théorie des nombres de Bordeaux
Stanislav Tomášek (1969)
Commentationes Mathematicae Universitatis Carolinae
William Habre (1985)
Publications du Département de mathématiques (Lyon)
W. Bade, H. Dales (1989)
Studia Mathematica
Holger Boche, Volker Pohl (2008)
Studia Mathematica
This paper characterizes the Banach algebras of continuous functions on which the spectral factorization mapping 𝔖 is continuous or bounded. It is shown that 𝔖 is continuous if and only if the Riesz projection is bounded on the algebra, and that 𝔖 is bounded only if the algebra is isomorphic to the algebra of continuous functions. Consequently, 𝔖 can never be both continuous and bounded, on any algebra under consideration.
Page 1