Calcul fonctionnel holomorphe dans les algèbres de Banach ultramétriques
Let G be a locally compact group and let π be a unitary representation. We study amenability and H-amenability of π in terms of the weak closure of (π ⊗ π)(G) and factorization properties of associated coefficient subspaces (or subalgebras) in B(G). By applying these results, we obtain some new characterizations of amenable groups.
This paper characterizes the Banach algebras of continuous functions on which the spectral factorization mapping 𝔖 is continuous or bounded. It is shown that 𝔖 is continuous if and only if the Riesz projection is bounded on the algebra, and that 𝔖 is bounded only if the algebra is isomorphic to the algebra of continuous functions. Consequently, 𝔖 can never be both continuous and bounded, on any algebra under consideration.