Nonlinear generalizations of the Banach-Stone theorem
Let A be a unital Banach function algebra with character space . For , let and be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of is connected, and that if x does not belong to the Shilov boundary of A then the set has an infinite connected subset. Various related results are given.
Let A and B be uniform algebras. Suppose that α ≠ 0 and A 1 ⊂ A. Let ρ, τ: A 1 → A and S, T: A 1 → B be mappings. Suppose that ρ(A 1), τ(A 1) and S(A 1), T(A 1) are closed under multiplications and contain expA and expB, respectively. If ‖S(f)T(g) − α‖∞ = ‖ρ(f)τ(g) − α‖∞ for all f, g ∈ A 1, S(e 1)−1 ∈ S(A 1) and S(e 1) ∈ T(A 1) for some e 1 ∈ A 1 with ρ(e 1) = 1, then there exists a real-algebra isomorphism : A → B such that (ρ(f)) = S(e 1)−1 S(f) for every f ∈ A 1. We also give some applications...
In recent years much work has been done analyzing maps, not assumed to be linear, between uniform algebras that preserve the norm, spectrum, or subsets of the spectra of algebra elements, and it is shown that such maps must be linear and/or multiplicative. Letting A and B be uniform algebras on compact Hausdorff spaces X and Y, respectively, it is shown here that if λ ∈ ℂ / 0 and T: A → B is a surjective map, not assumed to be linear, satisfying then T is an ℝ-linear isometry and there exist an...
We continue the study of the completeness and completions of normed algebras of differentiable functions Dⁿ(K) (where K is a perfect, compact plane set), initiated by Bland, Dales and Feinstein [Studia Math. 170 (2005) and Indian J. Pure Appl. Math. 41 (2010)]. We prove new characterizations of the completeness of D¹(K) and results concerning the semisimplicity of the completion of D¹(K). In particular, we prove that semi-rectifiability is necessary for the completion of D¹(K) to be semisimple in...