Ideals in subalgebras of C(X)
Let be the Beurling algebra with weight on the unit circle and, for a closed set , let . We prove that, for , there exists a closed set of measure zero such that the quotient algebra is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras and the algebra of absolutely continuous functions on , we characterize the closed sets for which the restriction algebras and are generated by their idempotents.
Let denote the real-valued functions continuous on the extended real line and vanishing at . Let denote the functions that are left continuous, have a right limit at each point and vanish at . Define to be the space of tempered distributions that are the th distributional derivative of a unique function in . Similarly with from . A type of integral is defined on distributions in and . The multipliers are iterated integrals of functions of bounded variation. For each , the spaces...
Let K be an ultraspherical hypergroup associated to a locally compact group G and a spherical projector π and let VN(K) denote the dual of the Fourier algebra A(K) corresponding to K. In this note, invariant means on VN(K) are defined and studied. We show that the set of invariant means on VN(K) is nonempty. Also, we prove that, if H is an open subhypergroup of K, then the number of invariant means on VN(H) is equal to the number of invariant means on VN(K). We also show that a unique topological...
Analogues of the classical Banach-Stone theorem for spaces of continuous functions are studied in the context of the spaces of absolutely continuous functions introduced by Ashton and Doust. We show that if AC(σ₁) is algebra isomorphic to AC(σ₂) then σ₁ is homeomorphic to σ₂. The converse however is false. In a positive direction we show that the converse implication does hold if the sets σ₁ and σ₂ are confined to a restricted collection of compact sets, such as the set of all simple polygons.