The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soit une algèbre uniforme et soit un idéal fermé de tel que soit une algèbre isométriquement isomorphe à , il existe alors une sous-algèbre fermée telle que est isométriquement isomorphe à .
Es bien conocido que el conjunto M de los ideales maximales de un álgebra de Banach compleja X es un espacio compacto y Hausdorff para la topología de Gelfand, y que X es isométricamente isomorfa al álgebra C(M,C) de las funciones continuas sobre M si y sólo si X es una B*-álgebra, es decir un álgebra de Banach con involución verificando ||x*x|| = ||x||2 (Gelfand-Naimark). En el caso no-arquimediano, X admite tal representación si y sólo si el subespacio vectorial engendrado por {e ∈ X | e2 = e,...
Dati due elementi e in un'algebra uniforme , sia . Nella presente Nota si danno, fra l’altro, due nuove dimostrazioni elementari del fatto che la funzione è subarmonica su e che l’applicazione è analitica nel senso di Oka.
We prove that every quotient algebra of a unital Banach function algebra A has a unique complete norm if A is a Ditkin algebra. The theorem applies, for example, to the algebra A (Γ) of Fourier transforms of the group algebra of a locally compact abelian group (with identity adjoined if Γ is not compact). In such algebras non-semisimple quotients arise from closed subsets E of Γ which are sets of non-synthesis. Examples are given to show that the condition of Ditkin cannot be relaxed. We construct...
Currently displaying 1 –
9 of
9