Facial Structure of the Sum of Two Compact Convex Sets.
It is shown that reducing bands of measures yield decompositions not only of an operator representation itself, but also of its commutant. This has many consequences for commuting Hilbert space representations and for commuting operators on Hilbert spaces. Among other things, it enables one to construct a Lebesgue-type decomposition of several commuting contractions without assuming any von Neumann-type inequality.
It is well known that any function algebra has an essential set. In this note we define an essential set for an arbitrary function space (not necessarily algebra) and prove that any function space has an essential set.
In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is -Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].