Divisibility Structure and Finitely Generated Ideals in the Disc Algebra.
We study subalgebras of equipped with topologies that generalize both the uniform and the strict topology. In particular, we study the Stone-Weierstrass property and describe the ideal structure of these algebras.
Let (X, d X) and (Y,d Y) be pointed compact metric spaces with distinguished base points e X and e Y. The Banach algebra of all -valued Lipschitz functions on X - where is either‒or ℝ - that map the base point e X to 0 is denoted by Lip0(X). The peripheral range of a function f ∈ Lip0(X) is the set Ranµ(f) = f(x): |f(x)| = ‖f‖∞ of range values of maximum modulus. We prove that if T 1, T 2: Lip0(X) → Lip0(Y) and S 1, S 2: Lip0(X) → Lip0(X) are surjective mappings such that for all f, g ∈ Lip0(X),...
In 1971, Grauert and Remmert proved that a commutative, complex, Noetherian Banach algebra is necessarily finite-dimensional. More precisely, they proved that a commutative, complex Banach algebra has finite dimension over ℂ whenever all the closed ideals in the algebra are (algebraically) finitely generated. In 1974, Sinclair and Tullo obtained a non-commutative version of this result. In 1978, Ferreira and Tomassini improved the result of Grauert and Remmert by showing that the statement...
We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space and discuss conditions under which the Poisson kernel is asymptotically multiplicative.