Facial Structure of the Sum of Two Compact Convex Sets.
Page 1 Next
A.K. Roy (1972)
Mathematische Annalen
Philippe Robba (1975/1976)
Groupe de travail d'analyse ultramétrique
J. Ward (1992)
Colloquium Mathematicae
Hana Petzeltová, Pavla Vrbová (1978)
Commentationes Mathematicae Universitatis Carolinae
James E. Daly (1988)
Mathematische Annalen
Egon Scheffold (1981)
Mathematische Zeitschrift
James J. KELLEHER, B.A. TAYLOR (1971)
Mathematische Annalen
Michael Von Renteln (1975)
Collectanea Mathematica
H. Goldmann (1986)
Annales Polonici Mathematici
A. V. Ferreira, G. Tomassini (1978)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Nakazi, Takahiko, Osawa, Tomoko (2001)
International Journal of Mathematics and Mathematical Sciences
Thakur, Balwant Singh, Jung, Jong Soo (1999)
International Journal of Mathematics and Mathematical Sciences
J.-N. Belgy (1977)
Jean Riss (1973)
Publications du Département de mathématiques (Lyon)
Daniel Barsky (1973)
Bulletin de la Société Mathématique de France
Maurice Koskas (1967/1968)
Séminaire Dubreil. Algèbre et théorie des nombres
M. El Azhari (1995)
Mathematica Slovaca
Steven Krantz (1982)
Studia Mathematica
Graham Allan (1996)
Studia Mathematica
The class of elements of locally finite closed descent in a commutative Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in which the algebra ℂ[[X]] may be embedded are completely characterized, and some applications to the theory of automatic continuity are given.
S. R. Patel (2008)
Studia Mathematica
We describe all those commutative Fréchet algebras which may be continuously embedded in the algebra ℂ[[X]] in such a way that they contain the polynomials. It is shown that these algebras (except ℂ[[X]] itself) always satisfy a certain equicontinuity condition due to Loy. Using this result, some applications to the theory of automatic continuity are given; in particular, the uniqueness of the Fréchet algebra topology for such algebras is established.
Page 1 Next