Homogenous Banach spaces on the unit circle.
We prove that a homogeneous Banach space B on the unit circle T can be embedded as a closed subspace of a dual space Ξ*B contained in the space of bounded Borel measures on T in such a way that the map B → Ξ*B defines a bijective correspondence between the class of homogeneous Banach spaces on T and the class of prehomogeneous Banach spaces on T.We apply our results to show that the algebra of all continuous functions on T is the only homogeneous Banach algebra on T in which every closed ideal has...