Displaying 341 – 360 of 914

Showing per page

Homogenous Banach spaces on the unit circle.

Thomas Vils Pedersen (2000)

Publicacions Matemàtiques

We prove that a homogeneous Banach space B on the unit circle T can be embedded as a closed subspace of a dual space Ξ*B contained in the space of bounded Borel measures on T in such a way that the map B → Ξ*B defines a bijective correspondence between the class of homogeneous Banach spaces on T and the class of prehomogeneous Banach spaces on T.We apply our results to show that the algebra of all continuous functions on T is the only homogeneous Banach algebra on T in which every closed ideal has...

Homomorphisms of commutative Banach algebras and extensions to multiplier algebras with applications to Fourier algebras

E. Kaniuth, A. T. Lau, A. Ülger (2007)

Studia Mathematica

Let A and B be semisimple commutative Banach algebras with bounded approximate identities. We investigate the problem of extending a homomorphism φ: A → B to a homomorphism of the multiplier algebras M(A) and M(B) of A and B, respectively. Various sufficient conditions in terms of B (or B and φ) are given that allow the construction of such extensions. We exhibit a number of classes of Banach algebras to which these criteria apply. In addition, we prove a polar decomposition for homomorphisms from...

Homomorphisms on algebras of Lipschitz functions

Fernanda Botelho, James Jamison (2010)

Studia Mathematica

We characterize a class of *-homomorphisms on Lip⁎(X,𝓑(𝓗 )), a non-commutative Banach *-algebra of Lipschitz functions on a compact metric space and with values in 𝓑(𝓗 ). We show that the zero map is the only multiplicative *-preserving linear functional on Lip⁎(X,𝓑(𝓗 )). We also establish the algebraic reflexivity property of a class of *-isomorphisms on Lip⁎(X,𝓑(𝓗 )).

Homotonic algebras

Michael Cwikel, Moshe Goldberg (2009)

Studia Mathematica

An algebra 𝓐 of real- or complex-valued functions defined on a set T shall be called homotonic if 𝓐 is closed under taking absolute values, and for all f and g in 𝓐, the product f × g satisfies |f × g| ≤ |f| × |g|. Our main purpose in this paper is two-fold: to show that the above definition is equivalent to an earlier definition of homotonicity, and to provide a simple inequality which characterizes submultiplicativity and strong stability for weighted sup norms on homotonic algebras.

Ideally factored algebras.

Amyari, M., Mirzavaziri, M. (2008)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions in I....

Idéaux fermés de certaines algèbres de Beurling et application aux opérateurs à spectre dénombrable

Cyril Agrafeuil (2005)

Studia Mathematica

We denote by the unit circle and by the unit disc of ℂ. Let s be a non-negative real and ω a weight such that ω ( n ) = ( 1 + n ) s (n ≥ 0) and the sequence ( ω ( - n ) / ( 1 + n ) s ) n 0 is non-decreasing. We define the Banach algebra A ω ( ) = f ( ) : | | f | | ω = n = - + | f ̂ ( n ) | ω ( n ) < + . If I is a closed ideal of A ω ( ) , we set h ( I ) = z : f ( z ) = 0 ( f I ) . We describe all closed ideals I of A ω ( ) such that h⁰(I) is at most countable. A similar result is obtained for closed ideals of the algebra A s ( ) = f A ω ( ) : f ̂ ( n ) = 0 ( n < 0 ) without inner factor. Then we use this description to establish a link between operators with countable spectrum and interpolating sets...

Ideáux fermés d'une algèbre de Beurling régulière.

Eric Decreux (1998)

Publicacions Matemàtiques

The structure of closed ideals of a regular algebra containing the classical A∞ is considered. Several division and approximation results are proved and a characterization of those ideals whose intersection with A∞ is not {0} is obtained. A complete description of the ideals with countable hull is given, with applications to synthesis of hyperfunctions.

Idempotents in quotients and restrictions of Banach algebras of functions

Thomas Vils Pedersen (1996)

Annales de l'institut Fourier

Let 𝒜 β be the Beurling algebra with weight ( 1 + | n | ) β on the unit circle 𝕋 and, for a closed set E 𝕋 , let J 𝒜 β ( E ) = { f 𝒜 β : f = 0 on a neighbourhood of E } . We prove that, for β &gt; 1 2 , there exists a closed set E 𝕋 of measure zero such that the quotient algebra 𝒜 β / J 𝒜 β ( E ) is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras λ γ and the algebra 𝒜 𝒞 of absolutely continuous functions on 𝕋 , we characterize the closed sets E 𝕋 for which the restriction algebras λ γ ( E ) and 𝒜 𝒞 ( E ) are generated by their idempotents.

In search of the invisible spectrum

Nikolai Nikolski (1999)

Annales de l'institut Fourier

In this paper, we begin the study of the phenomenon of the “invisible spectrum” for commutative Banach algebras. Function algebras, formal power series and operator algebras will be considered. A quantitative treatment of the famous Wiener-Pitt-Sreider phenomenon for measure algebras on locally compact abelian (LCA) groups is given. Also, our approach includes efficient sharp estimates for resolvents and solutions of higher Bezout equations in terms of their spectral bounds. The smallest “spectral...

Currently displaying 341 – 360 of 914