Divisible subspaces and problems of automatic continuity
In this note we establish a vector-valued version of Beurling’s theorem (the Lax-Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the “weak” completion problem in .
Let G be a locally compact group. Its dual space, G*, is the set of all extreme points of the set of normalized continuous positive definite functions of G. In the early 1970s, Granirer and Rudin proved independently that if G is amenable as discrete, then G is discrete if and only if all the translation invariant means on are topologically invariant. In this paper, we define and study G*-translation operators on VN(G) via G* and investigate the problem of the existence of G*-translation invariant...
We study the duals of the spaces of harmonic functions in the unit ball of with values in a Banach space X, belonging to the Bochner space with weight , denoted by . For 0 < α < p-1 we construct continuous projections onto providing a decomposition . We discuss the conditions on p, α and X for which and , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.