Displaying 21 – 40 of 103

Showing per page

On finitely generated closed ideals in H ( D )

Jean Bourgain (1985)

Annales de l'institut Fourier

Assume f 1 , ... , f N a finite set of functions in H ( D ) , the space of bounded analytic functions on the open unit disc. We give a sufficient condition on a function f in H ( D ) to belong to the norm-closure of the ideal I ( f 1 , ... , f N ) generated by f 1 , ... , f N , namely the property | f ( z ) | α ( | f 1 ( z ) | + ... + | f N ( z ) | ) for z D for some function α : R + R + satisfying lim t 0 α ( t ) / t = 0 . The main feature in the proof is an improvement in the contour-construction appearing in L. Carleson’s solution of the corona-problem. It is also shown that the property | f ( z ) | C max 1 j N | f j ( z ) | for z D for some constant C , does not necessary imply that f is...

On generalized Bergman spaces

Wolfgang Lusky (1996)

Studia Mathematica

Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying ʃ 0 1 ( ʃ 0 2 π | f ( r e i φ ) | p d φ ) q / p d μ ( r ) < .

On ideals consisting of topological zero divisors

Antoni Wawrzyńczyk (2000)

Studia Mathematica

The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.

On joint spectral radii in locally convex algebras

Andrzej Sołtysiak (2006)

Studia Mathematica

We present several notions of joint spectral radius of mutually commuting elements of a locally convex algebra and prove that all of them yield the same value in case the algebra is pseudo-complete. This generalizes a result proved by the author in 1993 for elements of a Banach algebra.

On linear extension for interpolating sequences

Eric Amar (2008)

Studia Mathematica

Let A be a uniform algebra on X and σ a probability measure on X. We define the Hardy spaces H p ( σ ) and the H p ( σ ) interpolating sequences S in the p-spectrum p of σ. We prove, under some structural hypotheses on A and σ, that if S is a “dual bounded” Carleson sequence, then S is H s ( σ ) -interpolating with a linear extension operator for s < p, provided that either p = ∞ or p ≤ 2. In the case of the unit ball of ℂⁿ we find, for instance, that if S is dual bounded in H ( ) then S is H p ( ) -interpolating with a linear...

Currently displaying 21 – 40 of 103