On certain class of non-removable ideals in Banach algebras
Given Banach algebras A and B with spectrum σ(B) ≠ ∅, and given θ ∈ σ(B), we define a product , which is a strongly splitting Banach algebra extension of B by A. We obtain characterizations of bounded approximate identities, spectrum, topological center, minimal idempotents, and study the ideal structure of these products. By assuming B to be a Banach algebra in ₀(X) whose spectrum can be identified with X, we apply our results to harmonic analysis, and study the question of spectral synthesis,...
We develop the theory of Segal algebras of commutative C*-algebras, with an emphasis on the functional representation. Our main results extend the Gelfand-Naimark Theorem. As an application, we describe faithful principal ideals of C*-algebras. A key ingredient in our approach is the use of Nachbin algebras to generalize the Gelfand representation theory.
In the present note, we characterize the essential set of a function algebra defined on a compact Hausdorff space in terms of its orthogonal measures on .
Assume a finite set of functions in , the space of bounded analytic functions on the open unit disc. We give a sufficient condition on a function in to belong to the norm-closure of the ideal generated by , namely the propertyfor some function : satisfying The main feature in the proof is an improvement in the contour-construction appearing in L. Carleson’s solution of the corona-problem. It is also shown that the propertyfor some constant , does not necessary imply that is...
Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying .
The class ω(A) of ideals consisting of topological zero divisors of a commutative Banach algebra A is studied. We prove that the maximal ideals of the class ω(A) are of codimension one.