A multilinear interpolation theorem
Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in . The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop’s property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.
We construct two examples of complete multiplicatively convex algebras with the property that all their maximal commutative subalgebras and consequently all commutative closed subalgebras are Banach algebras. One of them is non-metrizable and the other is metrizable and non-Banach. This solves Problems 12-16 and 22-24 of [7].
In [6] J. F. Feinstein constructed a compact plane set X such that R(X), the uniform closure of the algebra of rational functions with poles off X, has no non-zero, bounded point derivations but is not weakly amenable. In the same paper he gave an example of a separable uniform algebra A such that every point in the character space of A is a peak point but A is not weakly amenable. We show that it is possible to modify the construction in order to produce examples which are also regular.
We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.