Split Faces and Projective Sets in a Metrizable Compact Convex Set.
We introduce an algebraic notion-stability-for an element of a commutative ring. It is shown that the stable elements of Banach algebras, and of Fréchet algebras, may be simply described. Part of the theory of power-series embeddings, given in [1] and [4], is seen to be of a purely algebraic nature. This approach leads to other natural questions.
The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.
We study the relation between standard ideals of the convolution Sobolev algebra and the convolution Beurling algebra L¹((1+t)ⁿ) on the half-line (0,∞). In particular it is proved that all closed ideals in with compact and countable hull are standard.
Let be a completely regular Hausdorff space, the space of all scalar-valued bounded continuous functions on with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally -convex.
Dans quelle mesure une algèbre uniforme est-elle déterminée par l’espace vectoriel des parties réelles de ses éléments ? On s’intéresse à ce problème pour des algèbres définies sur des sous-ensembles compacts du plan complexe de connectivité finie.