Displaying 681 – 700 of 914

Showing per page

Stable elements of Banach and Fréchet algebras

Graham Allan (1998)

Studia Mathematica

We introduce an algebraic notion-stability-for an element of a commutative ring. It is shown that the stable elements of Banach algebras, and of Fréchet algebras, may be simply described. Part of the theory of power-series embeddings, given in [1] and [4], is seen to be of a purely algebraic nature. This approach leads to other natural questions.

Stable inverse-limit sequences, with application to Predict algebras

Graham Allan (1996)

Studia Mathematica

The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.

Standard ideals in convolution Sobolev algebras on the half-line

José E. Galé, Antoni Wawrzyńczyk (2011)

Colloquium Mathematicae

We study the relation between standard ideals of the convolution Sobolev algebra ( n ) ( t ) and the convolution Beurling algebra L¹((1+t)ⁿ) on the half-line (0,∞). In particular it is proved that all closed ideals in ( n ) ( t ) with compact and countable hull are standard.

Strict topologies as topological algebras

Surjit Singh Khurana (2001)

Czechoslovak Mathematical Journal

Let X be a completely regular Hausdorff space, C b ( X ) the space of all scalar-valued bounded continuous functions on X with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally m -convex.

Currently displaying 681 – 700 of 914