Saturated Actions of Finite Dimensional Hopf *-Algebras on C*-Algebras.
The present article is a survey of known results on Schur and operator multipliers. It starts with the classical description of Schur multipliers due to Grothendieck, followed by a discussion of measurable Schur multipliers and a generalisation of Grothendieck's Theorem due to Peller. Thereafter, a non-commutative version of Schur multipliers, called operator multipliers and introduced by Kissin and Schulman, is discussed, and a characterisation extending the description in the commutative case...
This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.