Displaying 41 – 60 of 118

Showing per page

K-theory of Boutet de Monvel's algebra

Severino T. Melo, Ryszard Nest, Elmar Schrohe (2003)

Banach Center Publications

We consider the norm closure 𝔄 of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a compact manifold X with boundary ∂X. Assuming that all connected components of X have nonempty boundary, we show that K₁(𝔄) ≃ K₁(C(X)) ⊕ ker χ, where χ: K₀(C₀(T*Ẋ)) → ℤ is the topological index, T*Ẋ denoting the cotangent bundle of the interior. Also K₀(𝔄) is topologically determined. In case ∂X has torsion free K-theory, we get K₀(𝔄) ≃ K₀(C(X)) ⊕ K₁(C₀(T*Ẋ)).

K-theory over C*-algebras

Alexandr S. Mishchenko (2007)

Banach Center Publications

The contents of the article represents the minicourse which was delivered at the 7th conference "Geometry and Topology of Manifolds. The Mathematical Legacy of Charles Ehresmann", Będlewo (Poland), 8.05.2005 - 15.05.2005. The article includes the description of the so called Hirzebruch formula in different aspects which lead to a basic list of problems related to noncommutative geometry and topology. In conclusion, two new problems are presented: about almost flat bundles and about the Noether decomposition...

Layer potentials C*-algebras of domains with conical points

Catarina Carvalho, Yu Qiao (2013)

Open Mathematics

To a domain with conical points Ω, we associate a natural C*-algebra that is motivated by the study of boundary value problems on Ω, especially using the method of layer potentials. In two dimensions, we allow Ω to be a domain with ramified cracks. We construct an explicit groupoid associated to ∂Ω and use the theory of pseudodifferential operators on groupoids and its representations to obtain our layer potentials C*-algebra. We study its structure, compute the associated K-groups, and prove Fredholm...

Les motifs de Tate et les opérateurs de périodicité de Connes

Abhishek Banerjee (2014)

Annales mathématiques Blaise Pascal

Dans cet article, nous définissons une catégorie M o t ˜ C des motifs sur une catégorie monoïdale symétrique ( C , , 1 ) vérifiant certaines hypothèses. Le rôle des espaces sur ( C , , 1 ) est joué par les monoïdes (non necessairement commutatifs) dans C . Pour définir les morphismes dans M o t ˜ C , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes M 𝕋 2 M dans M o t ˜ C , où 𝕋 est le motif de Tate dans M o t ˜ C .

Morita equivalence of groupoid C*-algebras arising from dynamical systems

Xiaoman Chen, Chengjun Hou (2002)

Studia Mathematica

We show that the stable C*-algebra and the related Ruelle algebra defined by I. Putnam from the irreducible Smale space associated with a topologically mixing expanding map of a compact metric space are strongly Morita equivalent to the groupoid C*-algebras defined directly from the expanding map by C. Anantharaman-Delaroche and V. Deaconu. As an application, we calculate the K⁎-group of the Ruelle algebra for a solenoid.

Currently displaying 41 – 60 of 118