Centrally ergodic one-parameter automorphism groups on semifinite injective von Neumann algebras.
In previous papers we introduced and studied the extension of a state defined on a von Neumann subalgebra to the whole of the von Neumann algebra with respect to a given state. This was done by using the standard form of von Neumann algebras. In the case of the existence of a norm one projection from the algebra to the subalgebra preserving the given state our construction is simply equivalent to taking the composition with the norm one projection. In this paper we study couples of von Neumann subalgebras...
A brief introduction to -graded quantum stochastic calculus is given. By inducing a superalgebraic structure on the space of iterated integrals and using the heuristic classical relation df(Λ) = f(Λ + dΛ) - f(Λ) we provide an explicit formula for chaotic expansions of polynomials of the integrator processes of -graded quantum stochastic calculus.
Let be the wreath product of a compact group T with the infinite symmetric group . We study the characters of factor representations of finite type of G, and give a formula which expresses all the characters explicitly.
Let G be a locally compact group, and consider the weakly almost periodic functionals on M(G), the measure algebra of G, denoted by WAP(M(G)). This is a C*-subalgebra of the commutative C*-algebra M(G)*, and so has character space, say . In this paper, we investigate properties of . We present a short proof that can naturally be turned into a semigroup whose product is separately continuous; at the Banach algebra level, this product is simply the natural one induced by the Arens products. This...
A Banach algebra A is called strict if the product morphism is continuous with respect to the weak norm in A ⊗ A. The following result is proved: A C*-algebra is strict if and only if all its irreducible representations are finite-dimensional and their dimensions are bounded.
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci.45 (2009) 745–785) to characterize unitary stationary independent increment gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson–Parthasarathy equation is proved.