Dual spaces of JB*-triples and the Radon-Nikodym property.
A quantum dynamical system, mimicking the classical phase doubling map on the unit circle, is formulated and its ergodic properties are studied. We prove that the quantum dynamical entropy equals the classical value log2 by using compact perturbations of the identity as operational partitions of unity.
We give new necessary and sufficient conditions for an element of a C*-algebra to commute with its Moore-Penrose inverse. We then study conditions which ensure that this property is preserved under multiplication. As a special case of our results we recover a recent theorem of Hartwig and Katz on EP matrices.
Building on the theory of elliptic operators, we give a unified treatment of the following topics: - the problem of homotopy invariance of Novikov’s higher signatures on closed manifolds, - the problem of cut-and-paste invariance of Novikov’s higher signatures on closed manifolds, - the problem of defining higher signatures on manifolds with boundary and proving their homotopy invariance.
We show that, if a a finite-dimensional operator space E is such that X contains E C-completely isomorphically whenever X** contains E completely isometrically, then E is -completely isomorphic to Rₘ ⊕ Cₙ for some n, m ∈ ℕ ∪ 0. The converse is also true: if X** contains Rₘ ⊕ Cₙ λ-completely isomorphically, then X contains Rₘ ⊕ Cₙ (2λ + ε)-completely isomorphically for any ε > 0.
This mainly expository article is devoted to recent advances in the study of dynamical aspects of the Cuntz algebras 𝓞ₙ, n < ∞, via their automorphisms and, more generally, endomorphisms. A combinatorial description of permutative automorphisms of 𝓞ₙ in terms of labelled, rooted trees is presented. This in turn gives rise to an algebraic characterization of the restricted Weyl group of 𝓞ₙ. It is shown how this group is related to certain classical dynamical systems on the Cantor set. An identification...