Feuilletages et algèbres d'opérateurs
We characterize C*-algebras and C*-modules such that every maximal right ideal (resp. right submodule) is algebraically finitely generated. In particular, C*-algebras satisfy the Dales-Żelazko conjecture.
Given a completely bounded map from an operator space into a von Neumann algebra (or merely a unital dual algebra) , we define to be -semidiscrete if for any operator algebra , the tensor operator is bounded from into , with norm less than . We investigate this property and characterize it by suitable approximation properties, thus generalizing the Choi-Effros characterization of semidiscrete von Neumann algebras. Our work is an extension of some recent work of Pisier on an analogous...
Results of T. Fack, P. de la Harpe and G. Skandalis concerning the internal structure of simple -algebras are extended to -algebras that are inductive limits of finite direct sums of homogeneous -algebras. The generalizations are obtained with slightly varying assumptions on the building blocks, but all results are applicable to unital simple inductive limits of finite direct sums of circle algebras.
We prove that for many -algebras, the null space of all finite traces is spanned by finite sums of commutators.
The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.