Some remarks on C*-bigebras and duality.
This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.
We clarify some aspects of quantum group gauge theory and its recent generalisations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided group provides us a trivial principal bundle in three ways.
Soit une algèbre de von Neumann finie. Nous montrons que l’espace des sommes finies de commutateurs de coïncide avec le noyau de la trace centrale. Si est un facteur, il en résulte par exemple que tout élément est une combinaison linéaire finie de projecteurs de dimension . Nous montrons aussi dans ce cas que le groupe dérivé de coïncide avec le noyau du déterminant de Fuglede-Kadison.
We show that every continuous derivation of a countably dominated Fréchet GB*-algebra A is spatial whenever A is additionally an AO*-algebra.
Given an orthogonal projection P and a free unitary Brownian motion in a W*-non commutative probability space such that Y and P are *-free in Voiculescu’s sense, we study the spectral distribution νₜ of Jₜ = PYₜPYₜ*P in the compressed space. To this end, we focus on the spectral distribution μₜ of the unitary operator SYₜSYₜ*, S = 2P - 1, whose moments are related to those of Jₜ via a binomial-type expansion already obtained by Demni et al. [Indiana Univ. Math. J. 61 (2012)]. In this connection,...
In this survey, we summarise some of the recent progress on the structure of spectral isometries between C*-algebras.
Let G be a locally compact abelian group and ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. We study Hilbert transforms associated with G-flows on ℳ and closed semigroups Σ of Ĝ satisfying the condition Σ ∪ (-Σ) = Ĝ. We prove that Hilbert transforms on such closed semigroups satisfy a weak-type estimate and can be extended as linear maps from L¹(ℳ,τ) into . As an application, we obtain a Matsaev-type result for p = 1: if x is a quasi-nilpotent compact operator...