Displaying 601 – 620 of 1491

Showing per page

Integral representations of the g -Drazin inverse in C * -algebras

N. Castro González, Jaromír J. Koliha, Yi Min Wei (2004)

Mathematica Bohemica

The paper gives new integral representations of the g -Drazin inverse of an element a of a C * -algebra that require no restriction on the spectrum of a . The representations involve powers of a and of its adjoint.

Intrinsic geometric on the class of probability densities and exponential families.

Henryk Gzyl, Lázaro Recht (2007)

Publicacions Matemàtiques

We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G+ of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...

Invariant subspaces for operators in a general II1-factor

Uffe Haagerup, Hanne Schultz (2009)

Publications Mathématiques de l'IHÉS

Let ℳ be a von Neumann factor of type II1 with a normalized trace τ. In 1983 L. G. Brown showed that to every operator T∈ℳ one can in a natural way associate a spectral distribution measure μ T (now called the Brown measure of T), which is a probability measure in ℂ with support in the spectrum σ(T) of T. In this paper it is shown that for every T∈ℳ and every Borel set B in ℂ, there is a unique closed T-invariant subspace 𝒦 = 𝒦 T ( B ) affiliated with ℳ, such that the Brown measure of T | 𝒦 is concentrated on B...

Currently displaying 601 – 620 of 1491