JB algebras with an exceptional ideal.
If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].
In this paper, we introduce certain Krein-space operators induced by free product algebras induced by both primes and directed graphs. We study operator-theoretic properties of such operators by computing free-probabilistic data containing number-theoretic data.
These notes represent the subject of five lectures which were delivered as a minicourse during the VI conference in Krynica, Poland, “Geometry and Topology of Manifolds”, May, 2–8, 2004.
We consider the norm closure 𝔄 of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a compact manifold X with boundary ∂X. Assuming that all connected components of X have nonempty boundary, we show that K₁(𝔄) ≃ K₁(C(X)) ⊕ ker χ, where χ: K₀(C₀(T*Ẋ)) → ℤ is the topological index, T*Ẋ denoting the cotangent bundle of the interior. Also K₀(𝔄) is topologically determined. In case ∂X has torsion free K-theory, we get K₀(𝔄) ≃ K₀(C(X)) ⊕ K₁(C₀(T*Ẋ)).