Displaying 721 – 740 of 1491

Showing per page

Monotone convolution semigroups

Takahiro Hasebe (2010)

Studia Mathematica

We study how a property of a monotone convolution semigroup changes with respect to the time parameter. Especially we focus on "time-independent properties": in the classical case, there are many properties of convolution semigroups (or Lévy processes) which are determined at an instant, and moreover, such properties are often characterized by the drift term and Lévy measure. In this paper we exhibit such properties of monotone convolution semigroups; an example is the concentration of the support...

Moore-Penrose inverses of Gram operators on Hilbert C*-modules

M. S. Moslehian, K. Sharif, M. Forough, M. Chakoshi (2012)

Studia Mathematica

Let t be a regular operator between Hilbert C*-modules and t be its Moore-Penrose inverse. We investigate the Moore-Penrose invertibility of the Gram operator t*t. More precisely, we study some conditions ensuring that t = ( t * t ) t * = t * ( t t * ) and ( t * t ) = t t * . As an application, we get some results for densely defined closed operators on Hilbert C*-modules over C*-algebras of compact operators.

Morita equivalence of groupoid C*-algebras arising from dynamical systems

Xiaoman Chen, Chengjun Hou (2002)

Studia Mathematica

We show that the stable C*-algebra and the related Ruelle algebra defined by I. Putnam from the irreducible Smale space associated with a topologically mixing expanding map of a compact metric space are strongly Morita equivalent to the groupoid C*-algebras defined directly from the expanding map by C. Anantharaman-Delaroche and V. Deaconu. As an application, we calculate the K⁎-group of the Ruelle algebra for a solenoid.

Morita equivalence of measured quantum groupoids. Application to deformation of measured quantum groupoids by 2-cocycles

Michel Enock (2012)

Banach Center Publications

In a recent article, Kenny De Commer investigated Morita equivalence between locally compact quantum groups, in which a measured quantum groupoid, of basis ℂ², was constructed as a linking object. Here, we generalize all these constructions and concepts to the level of measured quantum groupoids. As for locally compact quantum groups, we apply this construction to the deformation of a measured quantum groupoid by a 2-cocycle.

Multiplicative free square of the free Poisson measure and examples of free symmetrization

Melanie Hinz, Wojciech Młotkowski (2010)

Colloquium Mathematicae

We compute the moments and free cumulants of the measure ρ t : = π t π t , where π t denotes the free Poisson law with parameter t > 0. We also compute free cumulants of the symmetrization of ρ t . Finally, we introduce the free symmetrization of a probability measure on ℝ and provide some examples.

Multiplicative monotone convolutions

Uwe Franz (2006)

Banach Center Publications

Recently, Bercovici has introduced multiplicative convolutions based on Muraki's monotone independence and shown that these convolution of probability measures correspond to the composition of some function of their Cauchy transforms. We provide a new proof of this fact based on the combinatorics of moments. We also give a new characterisation of the probability measures that can be embedded into continuous monotone convolution semigroups of probability measures on the unit circle and briefly discuss...

Multiplier Hopf algebras and duality

A. van Daele (1997)

Banach Center Publications

We define a category containing the discrete quantum groups (and hence the discrete groups and the duals of compact groups) and the compact quantum groups (and hence the compact groups and the duals of discrete groups). The dual of an object can be defined within the same category and we have a biduality theorem. This theory extends the duality between compact quantum groups and discrete quantum groups (and hence the one between compact abelian groups and discrete abelian groups). The objects in...

Currently displaying 721 – 740 of 1491