Displaying 961 – 980 of 1491

Showing per page

Operator entropy inequalities

M. S. Moslehian, F. Mirzapour, A. Morassaei (2013)

Colloquium Mathematicae

We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341-348]. For two finite sequences A = (A₁,...,Aₙ) and B = (B₁,...,Bₙ) of positive operators acting on a Hilbert space, a real number q and an operator monotone function f we extend the concept of entropy by setting S q f ( A | B ) : = j = 1 n A j 1 / 2 ( A j - 1 / 2 B j A j - 1 / 2 ) q f ( A j - 1 / 2 B j A j - 1 / 2 ) A j 1 / 2 , and then give upper and lower bounds for S q f ( A | B ) as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004), 219-235] under...

Operator Figà-Talamanca-Herz algebras

Volker Runde (2003)

Studia Mathematica

Let G be a locally compact group. We use the canonical operator space structure on the spaces L p ( G ) for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues O A p ( G ) of the classical Figà-Talamanca-Herz algebras A p ( G ) . If p ∈ (1,∞) is arbitrary, then A p ( G ) O A p ( G ) and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that O A p ( G ) is a completely contractive Banach algebra for each p ∈ (1,∞), and that O A q ( G ) O A p ( G ) completely contractively for amenable...

Operator matrix of Moore-Penrose inverse operators on Hilbert C*-modules

Mehdi Mohammadzadeh Karizaki, Mahmoud Hassani, Maryam Amyari, Maryam Khosravi (2015)

Colloquium Mathematicae

We show that the Moore-Penrose inverse of an operator T is idempotent if and only if it is a product of two projections. Furthermore, if P and Q are two projections, we find a relation between the entries of the associated operator matrix of PQ and the entries of associated operator matrix of the Moore-Penrose inverse of PQ in a certain orthogonal decomposition of Hilbert C*-modules.

Operator Segal algebras in Fourier algebras

Brian E. Forrest, Nico Spronk, Peter J. Wood (2007)

Studia Mathematica

Let G be a locally compact group, A(G) its Fourier algebra and L¹(G) the space of Haar integrable functions on G. We study the Segal algebra S¹A(G) = A(G) ∩ L¹(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S¹A(G). We use it to show that the restriction operator u u | H : S ¹ A ( G ) A ( H ) , for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup, then the averaging...

Operator spaces which are one-sided M-ideals in their bidual

Sonia Sharma (2010)

Studia Mathematica

We generalize an important class of Banach spaces, the M-embedded Banach spaces, to the non-commutative setting of operator spaces. The one-sided M-embedded operator spaces are the operator spaces which are one-sided M-ideals in their second dual. We show that several properties from the classical setting, like the stability under taking subspaces and quotients, unique extension property, Radon-Nikodým property and many more, are retained in the non-commutative setting. We also discuss the dual...

Operators preserving ideals in C*-algebras

V. Shul'Man (1994)

Studia Mathematica

The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.

Operator-valued version of conditionally free product

Wojciech Młotkowski (2002)

Studia Mathematica

We present an operator-valued version of the conditionally free product of states and measures, which in the scalar case was studied by Bożejko, Leinert and Speicher. The related combinatorics and limit theorems are provided.

Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators

Artur Buchholz (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

For ( P k ) being Rademacher, Fermion or q-Gaussian (-1 ≤ q ≤ 0) operators, we find the optimal constants C 2 n , n∈ ℕ, in the inequality k = 1 N A k P k 2 n [ C 2 n ] 1 / 2 n m a x ( k = 1 N A * k A k 1 / 2 L 2 n , ( k = 1 N A k A * k 1/2∥L2n , valid for all finite sequences of operators ( A k ) in the non-commutative L 2 n space related to a semifinite von Neumann algebra with trace. In particular, C 2 n = ( 2 n r - 1 ) ! ! for the Rademacher and Fermion sequences.

Order theory and interpolation in operator algebras

David P. Blecher, Charles John Read (2014)

Studia Mathematica

In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between an operator...

Orlicz spaces associated with a semi-finite von Neumann algebra

Sh. A. Ayupov, V. I. Chilin, R. Z. Abdullaev (2012)

Commentationes Mathematicae Universitatis Carolinae

Let M be a von Neumann algebra, let ϕ be a weight on M and let Φ be N -function satisfying the ( δ 2 , Δ 2 ) -condition. In this paper we study Orlicz spaces, associated with M , ϕ and Φ .

Currently displaying 961 – 980 of 1491