Displaying 1001 – 1020 of 1491

Showing per page

Pexider type operators and their norms in X λ spaces

Abbas Najati, Themistocles M. Rassias (2009)

Czechoslovak Mathematical Journal

In this paper, we introduce Pexiderized generalized operators on certain special spaces introduced by Bielecki-Czerwik and investigate their norms.

Poisson boundaries of discrete quantum groups

Reiji Tomatsu (2010)

Banach Center Publications

This is a survey article about a theory of a Poisson boundary associated with a discrete quantum group. The main problem of the theory, that is, the identification problem is explained and solved for some examples.

Polar decomposition in Rickart C*-algebras.

Dmitry Goldstein (1995)

Publicacions Matemàtiques

A new proof is obtained to the following fact: a Rickart C*-algebra satisfies polar decomposition. Equivalently, matrix algebras over a Rickart C*-algebra are also Rickart C*-algebras.

Positive linear maps of matrix algebras

W. A. Majewski (2012)

Banach Center Publications

A characterization of the structure of positive maps is presented. This sheds some more light on the old open problem studied both in Quantum Information and Operator Algebras. Our arguments are based on the concept of exposed points, links between tensor products and mapping spaces and convex analysis.

Positive operator bimeasures and a noncommutative generalization

Kari Ylinen (1996)

Studia Mathematica

For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of...

Currently displaying 1001 – 1020 of 1491