On the dual weights for crossed products of von Neumann algebras I.
We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in -algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel....
We consider a class of nonlocal operators associated with a compact Lie group G acting on a smooth manifold. A notion of symbol of such operators is introduced and an index formula for elliptic elements is obtained. The symbol in this situation is an element of a noncommutative algebra (crossed product by G) and to obtain an index formula, we define the Chern character for this algebra in the framework of noncommutative geometry.
We compute the -theory of -algebras generated by the left regular representation of left Ore semigroups satisfying certain regularity conditions. Our result describes the -theory of these semigroup -algebras in terms of the -theory for the reduced group -algebras of certain groups which are typically easier to handle. Then we apply our result to specific semigroups from algebraic number theory.