Displaying 1321 – 1340 of 1491

Showing per page

The monotone Poisson process

Alexander C. R. Belton (2006)

Banach Center Publications

The coefficients of the moments of the monotone Poisson law are shown to be a type of Stirling number of the first kind; certain combinatorial identities relating to these numbers are proved and a new derivation of the Cauchy transform of this law is given. An investigation is begun into the classical Azéma-type martingale which corresponds to the compensated monotone Poisson process; it is shown to have the chaotic-representation property and its sample paths are described.

The Novikov conjecture for linear groups

Erik Guentner, Nigel Higson, Shmuel Weinberger (2005)

Publications Mathématiques de l'IHÉS

Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.

The Order on Projections in C*-Algebras of Real Rank Zero

Tristan Bice (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove a number of fundamental facts about the canonical order on projections in C*-algebras of real rank zero. Specifically, we show that this order is separative and that arbitrary countable collections have equivalent (in terms of their lower bounds) decreasing sequences. Under the further assumption that the order is countably downwards closed, we show how to characterize greatest lower bounds of finite collections of projections, and their existence, using the norm and spectrum of simple...

The order topology for a von Neumann algebra

Emmanuel Chetcuti, Jan Hamhalter, Hans Weber (2015)

Studia Mathematica

The order topology τ o ( P ) (resp. the sequential order topology τ o s ( P ) ) on a poset P is the topology that has as its closed sets those that contain the order limits of all their order convergent nets (resp. sequences). For a von Neumann algebra M we consider the following three posets: the self-adjoint part M s a , the self-adjoint part of the unit ball M ¹ s a , and the projection lattice P(M). We study the order topology (and the corresponding sequential variant) on these posets, compare the order topology to the other...

The path space of a higher-rank graph

Samuel B. G. Webster (2011)

Studia Mathematica

We construct a locally compact Hausdorff topology on the path space of a finitely aligned k-graph Λ. We identify the boundary-path space ∂Λ as the spectrum of a commutative C*-subalgebra D Λ of C*(Λ). Then, using a construction similar to that of Farthing, we construct a finitely aligned k-graph Λ̃ with no sources in which Λ is embedded, and show that ∂Λ is homeomorphic to a subset of ∂Λ̃. We show that when Λ is row-finite, we can identify C*(Λ) with a full corner of C*(Λ̃), and deduce that D Λ is isomorphic...

The Powers sum of spatial CPD-semigroups and CP-semigroups

Michael Skeide (2010)

Banach Center Publications

We define spatial CPD-semigroups and construct their Powers sum. We construct the Powers sum for general spatial CP-semigroups. In both cases, we show that the product system of that Powers sum is the product of the spatial product systems of its factors. We show that on the domain of intersection, pointwise bounded CPD-semigroups on the one side and Schur CP-semigroups on the other, the constructions coincide. This summarizes all known results about Powers sums and generalizes them considerably....

Currently displaying 1321 – 1340 of 1491