Displaying 121 – 140 of 1491

Showing per page

Algebras of continuous functions over P -spaces

Nicola Rodinò (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Nella prima parte della nota sono studiate le proprietà di connessione dei sottospazi dello spettro di un anello. Con l’ausilio dei risultati ottenuti, si stabiliscono le condizioni necessarie e sufficienti affinchè un’algebra reale assolutamente piatta sia isomorfa ad un’algebra di funzioni continue a valori reali su un P -spazio, del quale determini la topologia. Ulteriori condizioni sono necessarie e sufficienti affinché un’algebra reale assolutamente piatta sia isomorfa all’algebra di tutte le...

Amenability for dual Banach algebras

V. Runde (2001)

Studia Mathematica

We define a Banach algebra 𝔄 to be dual if 𝔄 = (𝔄⁎)* for a closed submodule 𝔄⁎ of 𝔄*. The class of dual Banach algebras includes all W*-algebras, but also all algebras M(G) for locally compact groups G, all algebras ℒ(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception than the rule. We confirm this impression. We first show that under certain conditions an amenable...

Amenability of Banach and C*-algebras on locally compact groups

A. Lau, R. Loy, G. Willis (1996)

Studia Mathematica

Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.

Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey

Nico Spronk (2010)

Banach Center Publications

Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras, L - 1 ( G ) and M(G), in a sense which generalizes the Pontryagin duality theorem on abelian groups. We wish to consider the amenability properties of A(G) and B(G) and compare them to such properties for L - 1 ( G ) and M(G). For us, “amenability properties” refers to amenability, weak amenability, and biflatness, as well as some properties which...

Currently displaying 121 – 140 of 1491