Logarithmic functional mean in convex analysis.
Given the probability measure over the given region , we consider the optimal location of a set composed by points in in order to minimize the average distance (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving...
Given the probability measure ν over the given region , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving...
We prove trace inequalities of type where , under suitable hypotheses on the sequences and , with the first sequence increasing and the second bounded.
We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...
We use Fourier multiplier theorems to establish maximal regularity results for a class of integro-differential equations with infinite delay in Banach spaces. Concrete equations of this type arise in viscoelasticity theory. Results are obtained for periodic solutions in the vector-valued Lebesgue and Besov spaces. An application to semilinear equations is considered.
We observe an infinitely dimensional Gaussian random vector x = ξ + v where ξ is a sequence of standard Gaussian variables and v ∈ l2 is an unknown mean. We consider the hypothesis testing problem H0 : v = 0versus alternatives for the sets . The sets Vε are lq-ellipsoids of semi-axes ai = i-s R/ε with lp-ellipsoid of semi-axes bi = i-r pε/ε removed or similar Besov bodies Bq,t;s (R/ε) with Besov bodies Bp,h;r (pε/ε) removed. Here or are the parameters which define the sets Vε for given radii...