Displaying 141 – 160 of 348

Showing per page

Long-term planning versus short-term planning in the asymptotical location problem

Alessio Brancolini, Giuseppe Buttazzo, Filippo Santambrogio, Eugene Stepanov (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Given the probability measure ν over the given region Ω n , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance Σ Ω dist ( x , Σ ) d ν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving...

Long-term planning versus short-term planning in the asymptotical location problem

Alessio Brancolini, Giuseppe Buttazzo, Filippo Santambrogio, Eugene Stepanov (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Given the probability measure ν over the given region Ω n , we consider the optimal location of a set Σ composed by n points in Ω in order to minimize the average distance Σ Ω dist ( x , Σ ) d ν (the classical optimal facility location problem). The paper compares two strategies to find optimal configurations: the long-term one which consists in placing all n points at once in an optimal position, and the short-term one which consists in placing the points one by one adding at each step at most one point and preserving...

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

Mathematical analysis for the peridynamic nonlocal continuum theory

Qiang Du, Kun Zhou (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

Mathematical analysis for the peridynamic nonlocal continuum theory*

Qiang Du, Kun Zhou (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

Mathematical and Computational Models in Tumor Immunology

F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, S. Motta (2012)

Mathematical Modelling of Natural Phenomena

The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...

Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces

Valentin Keyantuo, Carlos Lizama (2005)

Studia Mathematica

We use Fourier multiplier theorems to establish maximal regularity results for a class of integro-differential equations with infinite delay in Banach spaces. Concrete equations of this type arise in viscoelasticity theory. Results are obtained for periodic solutions in the vector-valued Lebesgue and Besov spaces. An application to semilinear equations is considered.

Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies

Yuri I. Ingster, Irina A. Suslina (2010)

ESAIM: Probability and Statistics

We observe an infinitely dimensional Gaussian random vector x = ξ + v where ξ is a sequence of standard Gaussian variables and v ∈ l2 is an unknown mean. We consider the hypothesis testing problem H0 : v = 0versus alternatives H ε , τ : v V ε for the sets V ε = V ε ( τ , ρ ε ) l 2 . The sets Vε are lq-ellipsoids of semi-axes ai = i-s R/ε with lp-ellipsoid of semi-axes bi = i-r pε/ε removed or similar Besov bodies Bq,t;s (R/ε) with Besov bodies Bp,h;r (pε/ε) removed. Here τ = ( κ , R ) or τ = ( κ , h , t , R ) ; κ = ( p , q , r , s ) are the parameters which define the sets Vε for given radii...

Currently displaying 141 – 160 of 348