Displaying 121 – 140 of 184

Showing per page

Representation of bilinear forms in non-Archimedean Hilbert space by linear operators

Toka Diagana (2006)

Commentationes Mathematicae Universitatis Carolinae

The paper considers representing symmetric, non-degenerate, bilinear forms on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making some assumptions it will be shown that if φ is a symmetric, non-degenerate bilinear form on a non-Archimedean Hilbert space, then φ is representable by a unique self-adjoint (possibly unbounded) operator A .

Representation of bilinear forms in non-Archimedean Hilbert space by linear operators II

Dodzi Attimu, Toka Diagana (2007)

Commentationes Mathematicae Universitatis Carolinae

The paper considers the representation of non-degenerate bilinear forms on the non-Archimedean Hilbert space 𝔼 ω × 𝔼 ω by linear operators. More precisely, upon making some suitable assumptions we prove that if ϕ is a non-degenerate bilinear form on 𝔼 ω × 𝔼 ω , then ϕ is representable by a unique linear operator A whose adjoint operator A * exists.

Spherical completeness with infinitesimals.

José Manuel Bayod (1982)

Revista Matemática Hispanoamericana

In the theory of nonarchimedean normed spaces over valued fields other than R or C, the property of spherical completeness is of utmost importance in several contexts, and it appears to play the role conventional completeness does in some topics of classical functional analysis. In this note we give various characterizations of spherical completeness for general ultrametric spaces, related to but different from the notions of pseudo-convergent sequence and pseudo-limit introduced by Ostrowski in...

Currently displaying 121 – 140 of 184