Displaying 41 – 60 of 80

Showing per page

On extendability of invariant distributions

Bogdan Ziemian (2000)

Annales Polonici Mathematici

In this paper sufficient conditions are given in order that every distribution invariant under a Lie group extend from the set of orbits of maximal dimension to the whole of the space. It is shown that these conditions are satisfied for the n-point action of the pure Lorentz group and for a standard action of the Lorentz group of arbitrary signature.

On Lipschitz and d.c. surfaces of finite codimension in a Banach space

Luděk Zajíček (2008)

Czechoslovak Mathematical Journal

Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated σ -ideals are studied. These σ -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.

On the differential geometry of some classes of infinite dimensional manifolds

Maysam Maysami Sadr, Danial Bouzarjomehri Amnieh (2024)

Archivum Mathematicum

Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space Γ X of any manifold X . The name comes from the fact that various elements of the geometry of Γ X are constructed via lifting of the corresponding elements of the geometry of X . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to X . In order to define a lifted...

On the range of the derivative of a real-valued function with bounded support

T. Gaspari (2002)

Studia Mathematica

We study the set f’(X) = f’(x): x ∈ X when f:X → ℝ is a differentiable bump. We first prove that for any C²-smooth bump f: ℝ² → ℝ the range of the derivative of f must be the closure of its interior. Next we show that if X is an infinite-dimensional separable Banach space with a C p -smooth bump b:X → ℝ such that | | b ( p ) | | is finite, then any connected open subset of X* containing 0 is the range of the derivative of a C p -smooth bump. We also study the finite-dimensional case which is quite different. Finally,...

On the range of the derivative of a smooth function and applications.

Robert Deville (2006)

RACSAM

We survey recent results on the structure of the range of the derivative of a smooth real valued function f defined on a real Banach space X and of a smooth mapping F between two real Banach spaces X and Y. We recall some necessary conditions and some sufficient conditions on a subset A of L(X,Y) for the existence of a Fréchet-differentiable mapping F from X into Y so that F'(X) = A. Whenever F is only assumed Gâteaux-differentiable, new phenomena appear: we discuss the existence of a mapping F...

On the structure of universal differentiability sets

Michael Dymond (2017)

Commentationes Mathematicae Universitatis Carolinae

A subset of d is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function f : d . We show that any universal differentiability set contains a ‘kernel’ in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.

Open Subsets of LF-spaces

Kotaro Mine, Katsuro Sakai (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and = i n d l i m (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.

Paraconvex functions and paraconvex sets

Huynh Van Ngai, Jean-Paul Penot (2008)

Studia Mathematica

We study a class of functions which contains both convex functions and differentiable functions whose derivatives are locally Lipschitzian or Hölderian. This class is a subclass of the class of approximately convex functions. It enjoys refined properties. We also introduce a class of sets whose associated distance functions are of that type. We discuss the properties of the metric projections on such sets under some assumptions on the geometry of the Banach spaces in which they are embedded. We...

Perturbations of isometries between C(K)-spaces

Yves Dutrieux, Nigel J. Kalton (2005)

Studia Mathematica

We study the Gromov-Hausdorff and Kadets distances between C(K)-spaces and their quotients. We prove that if the Gromov-Hausdorff distance between C(K) and C(L) is less than 1/16 then K and L are homeomorphic. If the Kadets distance is less than one, and K and L are metrizable, then C(K) and C(L) are linearly isomorphic. For K and L countable, if C(L) has a subquotient which is close enough to C(K) in the Gromov-Hausdorff sense then K is homeomorphic to a clopen subset of L.

Practical Ulam-Hyers-Rassias stability for nonlinear equations

Jin Rong Wang, Michal Fečkan (2017)

Mathematica Bohemica

In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations...

Currently displaying 41 – 60 of 80