The search session has expired. Please query the service again.
We prove that for each linear contraction T : X → X (∥T∥ ≤ 1), the subspace F = {x ∈ X : Tx = x} of fixed points is 1-complemented, where X is a suitable subspace of L¹(E*) and E* is a separable dual space such that the weak and weak* topologies coincide on the unit sphere. We also prove some related fixed point results.
We answer a question of H. Furstenberg on the pointwise convergence of the averages
,
where U and R are positive operators. We also study the pointwise convergence of the averages
when T and S are measure preserving transformations.
Let τ be a null preserving point transformation on a finite measure space. Assuming τ is invertible, P. Ortega Salvador has recently obtained sufficient conditions for the almost everywhere convergence of the ergodic averages in with 1 < p < ∞, 1 < q < ∞. In this paper we obtain necessary and sufficient conditions for the almost everywhere convergence, without assuming that τ is invertible and only assuming that p ≠ ∞.
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized and unified...
Let T be Dunford–Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic–Lin and Wu–Woodroofe....
We distinguish a class of unbounded operators in , r ≥ 1, related to the self-adjoint operators in ². For these operators we prove a kind of individual ergodic theorem, replacing the classical Cesàro averages by Borel summability. The result is equivalent to a version of Gaposhkin’s criterion for the a.e. convergence of operators. In the proof, the theory of martingales and interpolation in -spaces are applied.
In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...
Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality
= (I-T)XWe then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup with generator A satisfies
.
The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities for the ranges...
We continue the paper [Ts] on the boundedness of polynomials in the Volterra operator. This provides new ways of constructing power-bounded operators. It seems interesting to point out that a similar procedure applies to the operators satisfying the Ritt resolvent condition: compare Theorem 5 and Theorem 9 below.
E. Hille [Hi1] gave an example of an operator in L¹[0,1] satisfying the mean ergodic theorem (MET) and such that supₙ||Tⁿ|| = ∞ (actually, ). This was the first example of a non-power bounded mean ergodic L¹ operator. In this note, the possible rates of growth (in n) of the norms of Tⁿ for such operators are studied. We show that, for every γ > 0, there are positive L¹ operators T satisfying the MET with lim supn→ ∞ ||Tⁿ||/n1-γ₀ = 0A class of numerical sequences αₙ, intimately related to the...
Firstly, we give extensions of results of Gelfand, Esterle and Katznelson--Tzafriri on power-bounded operators. Secondly, some results and questions relating to power-bounded elements in the unitization of a commutative radical Banach algebra are discussed.
We characterize the Banach space operators T whose arithmetic means form a precompact set in the operator norm topology. This occurs if and only if the sequence is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.
Currently displaying 1 –
18 of
18