Some insights into the regularization of ill-posed problems.
In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere" , provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.
It is known that the nonlinear nonhomogeneous backward Cauchy problem , with , where is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on and , that a solution of the above problem satisfies an integral equation involving the spectral representation of , which is also ill-posed. Spectral truncation is used...